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ABSTRACT

We investigate the influence of low-level image features for
aesthetics prediction. We show that the aesthetic quality of a
photography depends on its context. Image features learned
from a specific image category are not necessarily the same
as features learned from a generic image collection. Ex-
periments conducted on specific image categories show that
specific features obtain statistically significantly better results
than generic ones.

Index Terms— aesthetic quality, feature extraction, clas-
sification.

1. INTRODUCTION

Given the ever increasing number of photographs taken, a rat-
ing of an image based on its aesthetic values can be very help-
ful in many different application scenarios such as personal
image collections, image enhancements, photo book creation,
and social media interactions. While “beauty” and “interest-
ingness” are subjective criteria that can be very personal, cer-
tain correlations with measurable image content and quality
features has been found [1, 2]. Consequently, automatically
assessing the aesthetic value of a photograph based on low-
level features is currently an active research topic [3, 4, 5, 6,
7, 8, 9, 10, 11].

What is common to all of these methods is that they evalu-
ate the aesthetics of an image solely on the features of the im-
age itself, which are either handcrafted or learned over a large
database of images. As such, these methods are agnostic to
the context of an individual image. Yet, one might wonder if
the features that make a “good” or “bad” image are truly inde-
pendent of what the image is meant to illustrate. For example,
are features based on saliency as predictive of the aesthetics
of an image when evaluating a city skyline as they are when
evaluating an image containing animals? Can we just learn
the correct features over a large corpus of images, or should
we limit our training data to images that are labeled the same?

In this paper, we investigate if the context of an image
has an influence on which low-level images features are best
suited to evaluate aesthetic. The context is determined by the
semantic label given to the image, i.e. its keywords. Dese-
laers and Ferrari [12] have shown, by analysing the images in

ImageNet [13] that images with semantically similar annota-
tions have more visual attributes in common than images with
dissimilar annotations. Lindner et al. [14] have also found
that images with the same keywords can have features that
are statistically significantly different than images that are not
annotated with that keyword. We thus investigate if this se-
mantic induced difference in observed features relates also to
the aesthetics of an image, or only to its content.

We first extract a large number of low-level features that
may be useful in predicting image aesthetics. We then use the
Sequential Forward Floating Search (SFFS) [15] to evaluate
which features are most significant. Our ground truth image
set is the large-scale AVA dataset [9] that contains 250K im-
ages with aesthetic scores and semantic labels. We select a
subset of 80K images that have either very low or very high
ratings to avoid evaluation reliability issues and unbalanced
training sets. This resulting set contains arbitrary images and
images that have the following labels: animals, nature, por-
traits, and city.

We then use SFFS to search for the best features over the
global subset as well as over the individual categories deter-
mined by the semantic labels. We find that the best features
are not exactly the same for the global and the labeled im-
age sets, even though many are similar. Features based on
saliency, for example, are only highly ranked for the cate-
gories that often contain a single object, such as animals or
portrait. On the other hand, sharpness is an aesthetic attribute
that is important for all images independent of their context.

To evaluate if the differences are statistically significant,
we split each of the subsets into a training and testing set. We
train each training set twice, once with the best features found
for the global set, and once with the best features found for the
specific semantic label that corresponds to that training set.
We then test how accurately each model predicts the aesthetic
ratings. We consistently obtain higher accuracy with the best
label specific features than with the generic features, and the
results are statistically significant.

2. STATE-OF-THE-ART

All of the state-of-the-art approaches for aesthetic quality pre-
diction use the same two-step algorithmic pipeline: (1) image
feature extraction and (2) classification of image quality ac-



cording to the extracted features. The main focus of all the
methods in the literature is on the design of features that will
give accurate classification results. Several works have inves-
tigated intuitive, low-level image features for quality predic-
tion [2, 3, 4, 5, 6]. They define features related to color, sharp-
ness, relation between foreground and background, salient
objects, etc. These features become the new image represen-
tation and are used as input to a classifier, such as the Support
Vector Machine [16].

Another category of approaches [7, 8, 10] uses generic
image descriptors, such as SIFT [17] together with image fea-
tures for quality prediction. They report superior prediction
accuracies compared to methods that exclusively use image
features. A latest method [11] utilizes a deep convolutional
neural network to automatically learn features from an ar-
tificially augmented version of the AVA dataset [9]. These
methods obtain state-of-the-art results, however, they lack in-
terpretation of the features in terms of their influence on the
final prediction accuracy.

3. METHODOLOGY

Our proposed method consists of two main steps:

1. Feature extraction for aesthetic image prediction.

2. Feature selection using as a criterion the aesthetic pre-
diction accuracy.

3.1. Feature extraction

We extract a set of 35 aesthetic quality features from each im-
age. The features can be divided into three categories: (1)
features that describe the whole image, (2) features that de-
scribe the salient region and (3) features that relate the main
subject with the background (as defined in [4]). A brief de-
scription of each feature, associated with its category, can be
found in Table 1.

Most of the features described in Table 1 are also used in
other works [2, 18, 4]. However, we compute some of the fea-
tures in a different way. The following features are computed
differently with respect to the related work: (1) #Edges, (2)
Sharpness, (3) Rule of Thirds (4) Salient region computation
and (5) Color variance. It is worth mentioning the difference
in the computation of the rule of thirds and the salient region
computation, because they are very important features that
photographers use to compose their photographs. In [2, 4],
the rule of thirds is computed as the mean values, in the HSV
color space, of the central region of the image. However, this
modeling does not take into account the spatial relationship of
the objects inside the composition. We approximate this rule
by computing the shortest distance of the salient region to a
power point. A power point is one of the intersection points
of the two horizontal and the two vertical lines that split a
photograph in nine equally sized regions. We believe that this
modeling is more intuitive and represents the rule of thirds in
a more robust and reliable way.

Name Description
Brightness
AVG and STD

(1) Average and standard deviation of the brightness, using
the V channel in the HSV space.

Color Variance (1) Variance of colors in the LAB space.
Contrast (1) Width of the middle 96% mass of the histogram of the V

channel in the HSV space.
#Edges and
#Edges L, R, T,
B, C

(1) We split the canny map into 16 × 16 blocks and we
compute the number of blocks containing more than 10% of
edges. We also compute this number on the left, right, top,
bottom and center regions of the image.

Hue Count (1) Approximation of the number of unique hues [18].
Saturation
AVG and STD

(1) Average and standard deviation of the saturation.

Sharpness (1) Variance of the Laplacian. [20]
Distance to the
Center

(2) Distance of the salient region to the center of the image.

Rule of Thirds (2) Shortest distance of the salient region to a power point.
Salient Hue,
Brightness and
Saturation

(2) Average hue, brightness and saturation of the salient re-
gion.

Salient Sharp-
ness

(2) Sharpness of the salient region.

Salient Size (2) Size of the salient region.
Salient LOC (2) We split the image into nine equal parts, and compute the

proportion of the salient region in each part. LOC can then
take nine values: Top-Left, Middle-Left, Bottom-Right...

Color Differ-
ence

(3) Difference of colors in the LAB space between the salient
object and the background.

Hue, Saturation
and Brightness
Difference

(3) Difference of hue, saturation and brightness between the
salient region and the background.

Sharpness Dif-
ference

(3) Difference of sharpness between the salient region and the
background.

Table 1: Description of the features used for aesthetic quality
prediction.

Furthermore, we use a more recent algorithm for saliency
detection [19]. More accurate salient object detection will
result in a more robust computation of all the features of Table
1 that depend on the salient region.

Finally, we also propose the following new features: (1)
Brightness STD, (2) Saturation STD, (3) Salient LOC, (4)
Color Difference, (5) Distance to the center. Standard de-
viations and differences of color give a reliable indication of
how spread the colors in a photograph are. High quality pho-
tographs usually contain few colors that are highly saturated.
On the other hand, non-professional photographs tend to con-
tain high variety of desaturated colors. The location of the
salient region is another important feature that is highly cor-
related with the rule of thirds.

3.2. Feature selection

Feature selection is used frequently in classification problems
(1) to avoid high-dimensionality, (2) to reduce the feature
measurement cost and (3) to reduce computational complex-
ity. Several feature selection methods exist in the literature
and they can be divided into two main categories: (1) exhaus-
tive (optimal) methods and (2) greedy (sub-optimal) methods.

Even though the exhaustive search methods are optimal
for feature selection, they are computationally intractable in
most of the real applications. In this work, we use a greedy
and efficient method that can scale to high-dimensional prob-
lems: the Sequential Forward Floating Search (SFFS) algo-



rithm [15]. We use SFFS to select the most significant fea-
tures from Table 1 for aesthetic quality prediction. Our objec-
tive that guides the selection procedure is the cross-validation
classification accuracy of a Support Vector Machine (SVM)
classifier with a Radial Basis Function (RBF) kernel [16].
SFFS begins with an empty set of features X and it stops
when the specified number of features n is reached. The main
steps of SFFS are the following:

1. Step 1: Inclusion. Select the most significant feature
with respect to X , and include it in X . Stop if n fea-
tures have been selected, otherwise, go to step 2.

2. Step 2: Conditional exclusion. Select the least signif-
icant feature k in X . If k was the last one added in step
1, keep it and go to step 1. Otherwise, exclude it and
go to step 3.

3. Step 3: Continuation of conditional exclusion. Again
find the least significant feature in X . If its removal
leaves X with at least two features, and the accuracy
without this feature is better, then remove it and repeat
step 3. Otherwise, return to step 1.

4. EXPERIMENTAL EVALUATIONS

4.1. Dataset

We apply our algorithm to the large-scale AVA dataset [9]
of 250K images. Visual aesthetic scores and two semantic
labels are associated to each image. These semantic labels
will enable us to create subsets based on image categories.

We select the 40K images with the lowest ratings and the
40K with the highest ratings to form our dataset (see Fig.
1). The reason for selecting this split is twofold: (1) we
avoid classification problems that come from heavily unbal-
anced datasets and (2) the gap between the low and high qual-
ity ratings enables us to reliably evaluate the performance of
our algorithm. The maximum rating of the low quality class
is 4.72 and the minimum rating of the high quality class is
6.06. To evaluate the prediction accuracy, we use the LIB-
SVM package [21], where we fix the parameters to C = 1
and γ = 1/num features.

Based on this dataset we use the semantic labels to built
dataset subsets for four categories: animal (7k images), city
(18k images), portrait (8k images) and nature (7k images).
Sample images with high and low ratings from two categories
are shown in Figure 2.

4.2. Generic Feature Learning

We use SFFS on our 80k dataset to extract the best features
from Table 1 for this set. On Figure 3 we show the evolution
of the accuracy over the number of features. We only keep
the seven best features as the accuracy becomes stable once
this number of features is reached. The best features for this

Fig. 1: Rating histogram of the AVA dataset. We use only
the images that are in the tail-ends of the distribution (blue
regions).

(a) Animal (4.04)
(b) Nature (3.49)

(c) Animal (7.01) (d) Nature (7.02)

Fig. 2: Sample images for two categories with low and high
ratings from the AVA dataset.

dataset are shown in the first row of Table 2. We refer to these
seven features as the best generic features.

4.3. Specific Feature Learning

We use SFFS on the category subsets to extract the best fea-
tures from Table 1 for each category in the same way as for the
feature selection on the whole dataset. In Figure 3 we show
the evolution of the accuracy over the number of features for
each category. For the same reason as previously, and for
consistency, we keep only the seven best features. The best
features for each category are listed in Table 2. For each cate-
gory, we refer to these seven features as the best specific fea-
tures. From Figure 3 we can see that the accuracy between the
different categories, except nature, is of the same magnitude.
In most of the categories, the prediction accuracy saturates
after seven features. The nature category behaves very simi-
larly to the global dataset, where the saturation point happens
after about 10-12 features. From the results of Table 2, we



Fig. 3: Evolution of classification accuracy during the SFFS
process.

Generic Brightness AVG, Color Variance, #Edges,
#Edges T, Hue Count, Saturation AVG, Sharp-
ness

Animal Contrast, #Edges R, #Edges T, Hue Count,
Salient Saturation, Salient Sharpness, Sharpness

Nature Brightness AVG, Color Variance, Contrast,
#Edges, #Edges T, Saturation AVG, Sharpness

Portrait Brightness AVG, #Edges, Hue Count, Salient
Hue, Salient Sharpness, Saturation AVG, Sharp-
ness

City Brightness AVG, Color Variance, Contrast,
#Edges T, Hue Count, Saturation AVG, Sharp-
ness

Table 2: The seven features from Table 1 that were, for each
category subset, selected by SFFS. The features are presented
in alphabetical order.

observe that sharpness is a very important feature in a photo-
graph, as well as the quantity of edges and the hue count.
These last two features give an indication of the “simplic-
ity” of a photo. From the results we observe that a “simple”
photo, with few colors and few objects, is more appealing
to the human eye. Features that describe the salient region,
such as Salient Sharpness and Salient Saturation, are impor-
tant for portrait and animal categories, where photos have a
main subject. On the other hand, no salient features appear in
the top seven for nature and city, which is an intuitive result,
because there is usually no main subject in these categories.
Compared to generic features, we observe a subtle difference
in the extracted specific features: specific features are intu-
itively better tuned to a specific category, while generic fea-
tures cover more general and holistic characteristics of the
photo. It is important to note here that we cannot evaluate
each one of the features of Table 2 independently from each
other. The reason is that SFFS evaluates the performance of
combination of features and not of individual features. It is
not necessary that the best individual feature is part of the
best combination of two features (see steps 2 and 3 of SFFS).

Generic features Specific features
Animals 70.05%(0.83) 70.35%(0.81)
Nature 66.65%(0.61) 67.12%(0.61)
Portrait 68.34%(0.92) 69.71%(0.84)
City 71.63%(0.97) 71.81%(0.97)

Table 3: Classification accuracy comparison on each cate-
gory. In the first column we classify each category using the
generic features extracted from the dataset (first row of Table
2). In the second column we classify each category using the
learned features from the same category (remaining rows of
Table 2).

4.4. Generic vs. Specific Features

To compare the efficiency of generic and specific features,
we split the category subsets into a training and a test set.
We train two models on the training set, one using the best
generic features, and one using the best specific features. We
then test those models on the test set and compare the results.
We randomly split the subsets 250 times and repeat the same
experiment. In Table 3 we show the average accuracies to-
gether with their standard deviations. Statistical significance
tests were also performed in order to evaluate if the differ-
ence between the accuracies obtained is significant. The two-
sided non-parametric Wilcoxon signed-rank test [22] gives a
p-value equal to 0, therefore the accuracy differences between
the two sets of features is statistically significant.

5. CONCLUSIONS

In this paper, we investigate the influence of image features
for aesthetic quality prediction. We show that features learned
from a specific image category are more accurate in predict-
ing the aesthetic quality of images that belong to this category
than generic features. Statistical tests show that this differ-
ence in accuracy is statistically significant. We show that pre-
dictive image features are dependent on the image’s context.
The code of our method can be found in our research page
http://ivrl.epfl.ch/research/aesthetics.

Our method assumes that the semantic labels of a pho-
tograph are given, which is not always the case. However,
in most of the cases, the semantic labels can be mined from
a textual description of the photograph. Even if that is not
possible, an intermediate step of image category classifica-
tion can be implemented, so that semantic labels for new pho-
tographs can be added.

The way we divide the AVA dataset into categories is not
the only one. There are several finer or coarser splits. In this
work, we chose intuitive and highly general categories in or-
der to investigate the potential differences in the most signif-
icant selected features. Further investigation and experiments
are needed to generalize our findings to different categories
and image collections.
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