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ABSTRACT

Recently sequential model based optimization (SMBO)
has emerged as a promising hyper-parameter optimiza-
tion strategy in machine learning. In this work, we inves-
tigate SMBO to identify architecture hyper-parameters of
deep convolution networks (DCNs) object recognition.
We propose a simple SMBO strategy that starts from a
set of random initial DCN architectures to generate new
architectures, which on training perform well on a given
dataset. Using the proposed SMBO strategy we are able
to identify a number of DCN architectures that produce
results that are comparable to state-of-the-art results on
object recognition benchmarks.

Index Terms— hyper-parameter optimization, deep
convolution networks, sequential model based optimiza-
tion

1. INTRODUCTION

The primary task for a supervised machine learning algo-
rithm is to use training dataset {xtr, ytr} to find a func-
tion f : x → y, that also generalize well across the test
(or the hold out) dataset {xh, yh}. Very often f is ob-
tained through the optimization of a training criterion, C,
with respect to a sets of parameters, θ. The learning algo-
rithm used to optimize C usually contains its own set of
free parameters λl, referred to as the learning algorithm
hyper-parameters. These hyper-parameters are often es-
timated using grid search cross validation. In addition to
the learning algorithm hyper-parameters, λl, neural net-
work models such as deep convolution networks (DCNs)
also comprise of hyper-parameters λa /∈ λl, that de-
fine the architectural configuration of the network. Grid
search techniques are prohibitively expensive to tune λa,
given the fact that there are a few tens of these architec-
tural hyper-parameters. As a result, many of the state-
of-the-art DCNs are manually designed, making the task
of tuning these hyper-parameters more of an art than a
science [1].

In recent years, there has been a concerted effort
in the machine learning community to develop better
algorithms to solve the hyper-parameter optimization
problem [1, 2, 3, 4, 5]. Many of these works have suc-
cessfully applied direct search methods for non-linear
optimization such as the sequential model based opti-
mization (SMBO) to generate better results on various
supervised machine learning tasks than were previously
reported. Motivated by these works, in this paper we
attempt to address the question: Can SMBO be used
to determine superior architectural configurations for
DCNs? The paper is organized as follows: In the Meth-
ods Section 2, we will briefly formulate the problem
of hyper-parameter optimization for DCNs. We then
present the general strategy of sequential model based
optimization (SMBO) [4] and summarize our approach
to SMBO for designing DCN architectures. The results
of image classification training and evaluation on the
benchmark CIFAR-10 dataset are then presented in the
Results Section 3, which is followed by the Conclusion.

2. METHODS

2.1. Formulation of the problem

Let Mλ(x,w) represent the DCN model that operates on
input data x ∈ RD and generates an estimate ŷ for the
output data y ∈ ZC2 . The DCN model, M , is parameter-
ized by two set of parameters, the first beingw, which are
obtained through the optimization of a training criterion,
C, using a gradient descent type learning algorithm such
as the back-propagation algorithm and the second being
λ = {λa, λl}, which represent the set of the so called
hyper-parameters. The hyper-parameters λa define the
DCN architecture and the hyper-parameters λl, are asso-
ciated with the learning algorithm used to optimize C.
The objective for DCN hyper-parameter optimization is
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to solve the joint optimization problem as stated below:

{w, λ} = argmin
λ

[Ψ(ŷh, yh)] where,

ŷh = Mλ(argmin
w

(C(xtr, ytr, θ)) , xh) (1)

where {(xtr, ytr), (xh, yh)}∈ (x, y), are the input
and output training and hold-out (or the test) data set re-
spectively, Ψ =

∑
{yh} Iyh 6=ŷh .

2.2. Sequential model based optimization

SMBO is a direct search method for non-linear optimiza-
tion, in which one begins by selecting a meta-model of
the function for which an extrema is sought. One then
applies an active learning strategy to select a query point
that provides the most potential to approach the extrema.
More specifically, let us assume that we have a database
D1:t = {λ1:t, e1:t} of t DCN models, where λi|ti=1 rep-
resents the set of hyper-parameters and ei|ti=1 is the val-
idation error on the hold-out dataset generated by each
of the t DCN models. The basic idea underlying SMBO
is to replace the original optimization problem of find-
ing extrema of a given function, such as Ψ(λ), which is
time consuming and computationally expensive, with an
equivalent problem of optimization of expected value of
an utility function, u(e) [4]. As we will see below, op-
timizing over the expected value of the utility function
is computationally much cheaper and faster than solving
the original problem. Under SMBO, one usually begins
by assigning a prior distribution p(e) on e. One then uses
the database D1:t to obtain an estimate for the likelihood
function p(λ1:t|e). The prior and the likelihood function
are used to obtain an estimate for the posterior distribu-
tion p(e|λ1:t) ∝ p(λ1:t|e)p(e). The objective then is to
choose λt+1, which maximizes u(e) under p(e|λ1:t), i.e.,
λt+1 = argmax

λ
[E(u(e))], where E(u(e)) is given as:

E(u(e)) =

∫
u(e)p(e|λ1:t)de

=

∫
u(e)

p(λ1:t|e)p(e)
p(λ1:t)

de (2)

A common choice for the utility function u(e),
is the Expected Improvement function [4], u(e) =
max ((e∗ − e), 0), in which case, Eq. 4 becomes

E(u(e)) =

∫ e∗

0

(e∗ − e)p(e|λ1:t)de (3)

Then under SMBO we have,

λt+1 = argmax
λ

[
e∗

p(λ1:t)

∫ e∗

0

p(λ1:t|e)p(e)de

]
(4)

HyperOpt (D1:t, p,N ):
While t ≤ N do:
1. Estimate e∗ s.t. p(e1:t < e∗) = 0.5
2. Use e∗ and λ1:t to estimate l(λ) and g(λ)
3. Evaluate λt+1 according to Eq. 5 and Eq. 6
4. Train the new DCN model with λt+1 to estimate et+1

5. t← t+ 1

Table 1. SMBO algorithm for estimating architecture
hyper-parameters for DCN.

If p(e < e∗) = γ (a constant), i.e., choose e∗ to be some
quantile of observed e values, and we define two density
functions; l(λ) = p(λ1:t|e) when e ≤ e∗ and g(λ) =
p(λ1:t|e) when e > e∗ as proposed in [1], then,

λt+1 = argmax
λ

[
e∗γl(λ)

γl(λ) + (1− γ)g(λ)

]
(5)

Bergstra et.al., [1], proposed an adaptive Parson es-
timator algorithm to evaluate Eq. 5 so as to maximize
the ratio l(λ)/g(λ). In this work, we propose a simple
strategy to evaluate Eq. 5 as follows: let l(λ) + g(λ) =
U(λ) = k (a constant). In other words, λ is drawn from
a uniform distribution. Then, if γ = 0.5, we have from
Eq. 5

λt+1 =
2e∗

k
argmax

λ
[l(λ)] (6)

Our proposed simplification in Eq. 6, does not require
an estimate for both l(λ) and g(λ). We can simply pick
λ ∈ U(λ) and evaluate according to empirical distri-
bution of l(λ) generated from D1:t to evaluate the next
potential λt+1. Since the proposed algorithm chooses
λ ∈ U(λ) at every step, a much larger space of poten-
tial λ’s are explored, which may in turn slow down the
convergence rate to an optimal λ∗. In order to counter
this,we adopt a hybrid strategy by combining Eq. 5 and
Eq. 6. With probability p, at every iteration, we choose
the potential λt+1 according to Eq. 5 and with probabil-
ity 1− p, we choose the potential λt+1 according to Eq.
6. In Table 1, we summarize the steps involved in our
proposed algorithm.

3. RESULTS

We evaluate our proposed SMBO algorithm on the
CIFAR-10 benchmark, which consists of 60,000 32x32
color images. The collection is split into 50,000 train-
ing and 10,000 testing images. All the DCNs generated
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by our proposed algorithm were trained using cuda-
convnet21. We used a 3 step cooling procedure; starting
with learning rate l = 0.01, the momentum m = 0.9,
the weight decay parameter wc = 0.0005 for the first
120 epochs followed by another 20 epochs by reducing
learning rate by a factor of 10 (keeping other parame-
ters the same) and then training for 10 more epochs by
further reducing learning rate by a factor of 10.

Since the primary focus for us in this work is to de-
termine whether SMBO can be used to identify suitable
DCN architectures, we fixed the DCN hyper-parameters
associated with the back-propagation learning algorithm
as described above. The set of DCN architecture hyper-
parameters that we consider for optimization are listed in
Table 2.

Conv. Layer
1. No. of Conv. layers
2. No. of filters per layer
3. Filter size; 4. Filter stride

Norm. Layer 1. Size

Pool Layer
1. Size; 2. Stride
3. type of pooling: max/avg.

Hidden Layer
1. No. of hidden layers
2. No. of nodes per hidden layer
3. dropout value

Table 2. DCN architecture hyper-parameters. In addition
to the parameters listed above; we also consider two ad-
ditional boolean hyper-parameters to represent the pres-
ence or absence of the Norm layer or the pool layer and
a third boolean hyper-parameter indicating the presence
or absence of dropout. For normalization layer; we only
consider local response normalization across filter maps
[6], with a scaling factor of 0.75.

It has been reported in the literature [7] that very deep
networks are difficult to train primarily suffering from
vanishing gradient problem at larger depths. In order to
alleviate this problem, for our implementation of SMBO
for DCN architectural hyper-parameters, all the DCNs
are generated to comprise a local logistic regression (LR)
cost function layer at the output of one or more of the
convolution block.

For the results presented here, we consider t = 32 as
the size of our initial database based on our analysis of
random search hyper-parameter optimization [5] and we
set p = 0.9.

1https://code.google.com/p/cuda-convnet2/

a)

b)
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Fig. 1. (a) The mean test error and standard deviation
(in yellow) as function of the SMBO iteration number for
multi-view mode (b) The minimum multi-view mode test
error as function of SMBO iteration number
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Convolutions Fully-connected Test error

Architecture # Trainable Parameters Parameters Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 1 Layer 2 Softmax 550 epochs

DCN 1. ≈30.9 M Filter / size 64x3x3 256x3x3 256x3x3 256x3x3 256x3x3 256x3x3 256x3x3 256x11x11 3,314 4,951 10 7.81%
Stride 1 1 2 2 1 2 2 10
Padding 0 0 1 1 0 1 1 9
Pooling (Size, Stride) (2,2)
Normalization X X X

Dropout X X

DCN 2. ≈4.0 M Filter / size 128x3x3 128x3x3 128x3x3 256x3x3 256x3x3 256x7x7 NA NA NA NA 10 8.17%
Stride 1 2 1 1 1 2
Padding 0 1 0 0 0 1
Pooling (Size, Stride)
Normalization X X X

Dropout

DCN 3. ≈3.4 M Filter / size 256x3x3 128x3x3 256x3x3 256x3x3 256x3x3 128x7x7 NA NA NA NA 10 8.63%
Stride 1 2 1 1 2 5
Padding 0 1 0 0 1 2
Pooling (Size,Stride)
Normalization X

Dropout

Table 3. Architecture for the top 3 DCNs generated by our proposed SMBO algorithm.

In Figure 1a, we plot the mean (std. error, shown in
yellow) test error (evaluated in multi-view test mode, [6])
E(i) = 〈ei−10:i〉 and in Figure 1b, we plot the minimum
test error M(i) = min(e0:i) as function of the iteration
number i, respectively. We see that the average test er-
ror gradually decrease towards an optimal solution, the
best minimum found also decreases with increasing it-
erations. Furthermore, our proposed SMBO procedure
generated a large number of “good” DCN architectures
that produce test-error of < 11 % even with only 150
training epochs (not-reported). In comparison, the best
hand-tuned DCN architecture, produced by [6] exhibits
11% test error in multi-view mode and requires a longer
training time on the order of 500 epochs.

Since the state-of-the-art performance numbers for
the CIFAR-10 benchmark dataset are usually reported in
multi-view mode (with data-augmentation [6]), we re-
port multi-view test error of 7.81% for the best DCN
generated by our proposed hyper-parameter optimization
strategy, which compares favorably to the current state-
of-the-art result on CIFAR-10 of 7.97% [8]. In Table 3,
we summarize the top 3 DCN architectures found by our
proposed SMBO procedure that produced multi-view test
error< 9% on the CIFAR-10 benchmark. In ??, we sum-
marize the number of parameters in each of these 3 DCN
models.

At the time of writing of this manuscript for cam-
era ready version, we came across a recent paper [9],
that reported multi-view test error of 7.25% on CIFAR-
10 benchmark, using a hand designed DCN network,
that is comprised of only convolution layers and has
1.3 M parameters. Yet another paper [10], reported the

utility of using parametric-relu neuron as opposed to
the relu neurons. While none of the optimized DCN
networks that we report in Table 3 generate better per-
formance numbers than the latest state-of-the-art num-
bers reported in [9], we wanted to determine whether
the use of parametric-relu neuron can boost the per-
formance of the optimized DCN networks that we
have identified through the hyper-parameter optimiza-
tion approach. Accordingly, we retrained the smallest
of the three DCN networks from Table 3 using a ver-
sion of parametric-rectified non-linear neurons of type
y = ax(x ≤ 0) +

√
x(x > 0), where a is a learnable

parameter, fixed per neuron layer in the DCN network.
We were able to obtain multi-view test error score of 6.9
%, which to the best of our knowledge, represents the
state-of-the-art score for CIFAR-10 benchmark. In Table
4, we summarize all the known best in class numbers for
CIFAR-10 benchmark.

CIFAR-10 Classification error (with data augmentation)

Method Activation Function Type Error % Trainable Params

Maxout [11] maxout 9.38 >6 M
Dropconnect [12] relu 9.32 -
dasNet [13] maxout 9.22 >6 M
Network in Network [14] relu 8.81 ≈1 M
Deeply Supervised [15] relu 7.97 ≈1 M
All-CNN [9] relu 7.25 ≈1.3 M
DCN-3 (Ours) p-renu 6.9 ≈3.4 M

Table 4. Comparison of state-of-the-art results for
CIFAR-10 benchmark; relu: rectified linear unit; p-renu:
parametric-rectified non-linear unit.
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4. CONCLUSION

In this paper, we have proposed a simple SMBO algo-
rithm and a recipe for hyper-parameter optimization of
DCN architectures. We have demonstrated that SMBO
can be used to generate a large number of “good” DCN
architectures, which may then form a backbone for
further investigations. Our results suggest that indeed
SMBO can be used to identify superior DCNs. In sum-
mary, our work in this paper in addition to those from
earlier works [1, 3] broaden the scope of the models that
can be realistically investigated, without the need for the
researchers to be restricted to manual evaluation of a few
architectural parameters at any given time.
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