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ABSTRACT

This paper introduces a pyramidal decomposition system suit-

able for high frame rate and real-time applications. The presented

system’s architecture omits the image transpose block used in stan-

dard separable filters, and implements internal downsampling to re-

duce number of computations. The decomposition is implemented

in form of a field programmable gate array (FPGA) hardware accel-

erator and the presented results show the low resource utilization of

the design. The internal downsampling reduces the power consump-

tion by an order of magnitude compared to state-of-the-art, which

makes this accelerator an excellent addition to co-processors on mo-

bile platforms.

1. INTRODUCTION AND RELATED WORK

Pyramidal decomposition of images has been extensively used since

the work of Burt and Adelson [1]. The pyramid is a data structure

representing band-pass filtered images, where each level of the pyra-

mid provides information on a different scale. Apart from the origi-

nal idea of using it for image compression, the multiscale represen-

tations are also used in image fusion [2, 3, 4], image mosaicing [5],

and tone mapping of high dynamic range images [6].

The advancements in areas such as machine vision, aerial

surveillance and object tracking emphasized the importance of real-

time image and video processing. Timing constraints in real-time

processing are significantly tighter than in offline processing, and

speed optimization of filters becomes necessary. This is especially

important for algorithms that are highly dependent on multiresolu-

tion analysis [7, 8].

Changes in the processing platforms followed development

of computationally demanding algorithms. Dedicated application-

specific integrated circuits (ASIC) and field-programmable-gate-

arrays (FPGA) are often used, in addition to personal computers

(PC) and digital signal processors (DSP). FPGAs [9] and ASICs

[10, 11] became popular tools for image processing, thanks to supe-

rior performance and shorter execution time compared to standard

PCs and DSPs. The FPGA design offers more flexibility, which

is demonstrated in designs of dedicated filtering blocks [8, 12] or

multiprocessor implementations [13].

Two-dimensional (2-D) filters are the fundamental tool for creat-

ing image pyramids. Traditional hardware implementation of filter-

ing in spatial domain involves efficient implementation of 2-D con-

volution. Direct 2-D convolution is simple for hardware implemen-

tation [8, 14, 15]. However, these designs can be inefficient depend-

ing on several circumstances.
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First, high filter order requires simultaneous access to a large

number of pixels. For a K × K filter, K pixels from K different

rows should be loaded for each calculation. This is incompatible

with most raw images acquired by the modern cameras, which store

images in the raster scan format, i.e. line-by-line. Thus, a K × K
filter requires at least K accesses to the storage medium, depending

on the processor bus width. Furthermore, storage mediums such as

external memory or hard disk add additional latency to the process-

ing system, due to longer access time. Problem with random access

is emphasized even further when images are stored in DRAM, since

random memory access to DRAM can reduce data rates by an order

of magnitude. Apart from the speed issues, number of multipliers in

a direct 2-D filter implementation is K2, which further increases the

design area and required hardware blocks.

Separable filtering is often used to avoid the presented problems

[16]. Separable filters first process rows and then columns, hence

there is no need for random memory access. Furthermore, the num-

ber of multipliers is reduced to 2K. However, use of separable fil-

ters introduces two new problems: (1) separable filtering requires an

image transpose after the row filtering, and (2) large overhead is cre-

ated when pyramidal decomposition is used, due to downsampling

between pyramid levels.

State-of-the-art solutions [16] resolve image transposition by

placing K large line buffers before the row filter, storing enough

data for both row and column filters to operate. However, these

implementations still produce large overhead, as the optional down-

sampling is performed after the filtering.

In this paper we present a hardware accelerator for low-power

high-performance pyramidal decomposition, based on systolic sep-

arable filters. The designed filtering scheme lowers the computa-

tional overhead by supporting internal downsampling, hence reduc-

ing the size of line buffers. Pyramid levels are processed in a sin-

gle clock domain, with implemented clock-gating. This method re-

duces the dynamic power consumption and simplifies the clock tree

routing compared to multi-clock-domain designs [3]. Furthermore,

the high-throughput of the system is achieved using a fully systolic

(pipelined) architecture.

The design is demonstrated on a Laplacian pyramid (LP) exam-

ple, using a K = 5 filter. Section 2 introduces fundamentals of LP

decomposition. The proposed accelerator design and its FPGA im-

plementation are presented in Section 3. Performance results of the

implementation and comparisons of frame rate and power consump-

tion are shown in Section 4.
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Fig. 1. Laplacian pyramid decomposition and reconstruction with four levels. The top level (level 4) represents the coarse approximation,

whereas the bottom level represents the details. The new analysis and synthesis filters with internal downsampling are marked with red and

blue dashed rectangles. They are marked only in the first level for clarity reasons. The processing block denotes operations on the decomposed

pyramid, and it does not change the inter-pixel timing within LP levels. The LP reconstruction is performed on the processed pixels, on the

right side of the figure.

2. LAPLACIAN PYRAMID

Laplacian pyramid is a multispectral and multiscale representation

of an image, where each pyramid level contains one frequency band

of the image. LP transform is illustrated in Fig. 1. Let x be the source

image. The image is filtered using the analysis low-pass filter H(z)

and downsampled by two, in both horizontal and vertical directions.

The decimated image is then upsampled and filtered with the syn-

thesis filter G(z). The first level (l1 in Fig. 1) of the LP is obtained

by subtraction of the interpolated image from the source x, and it

represents the high-frequency content of the image, i.e. the details.

The decimated image is also used as the source for the second level

of decomposition. An L-level LP is created using L− 1 repetitions

of the mentioned principle.

Both image quality and timing performance are dependent on

the filters H(z) and G(z). The 2-D finite impulse response (FIR) fil-

ters are often used in FPGA and ASIC designs due to their inherent

stability and simplicity of design in digital systems. The implemen-

tation of 2-D FIR filters can be either separable or non-separable.

The non-separable (direct) implementation consists of 2-D convolu-

tion of the filter matrix with the image. For N×M image resolution

and K ×K filter matrix size, the computational complexity of such

filtering is O(MNK2). The hardware design requires K2 multipli-

ers and complex input buffer structure for larger filter sizes.

Oppositely, separable filters require less multipliers and adders

compared to the direct implementation. However, traditional sepa-

rable implementation based on software algorithms is very resource-

demanding and quite inefficient. Such computation is mathemati-

cally expressed as:

x′ = (x ∗ hr)
T ∗ hc (1)

where x and x′ are the original and the filtered image, respec-

tively, and hr and hc are row and column 1-D filters. Operation

denoted with ∗ represents a 1-D convolution. Without loss of gener-

ality, in the rest of the paper we will consider symmetric 2-D filters,

i.e. h = hr = hc.

The main issue of this implementation is the transposition block.

Even though the complexity of O(MNK) is lower compared to di-

rect filtering, it requires more memory, as the whole intermediate

image result is buffered. The buffering is obligatory due to reorder-

ing (transposing) of the pixels before the second 1-D filter is applied,

which increases the system latency by N ×M .

3. FPGA IMPLEMENTATION

The main goals of our design are real-time performance, reduction

of required hardware in the transposition block, and low-power op-

eration. Real-time performance is achieved by reducing the critical

path delay using pipeline architecture, i.e. result of each arithmetic

operation in the algorithm is followed by a register. Hence, the crit-

ical path is reduced to the length of the longest path in a single

arithmetic block. Furthermore, the proposed design includes data

sharing, which reduces number of memory read requests, increases

performance and reduces hardware complexity. The low-power op-

eration is achieved by switching reduction, hence lowering dynamic

power dissipation.

3.1. Analysis Filter Architecture

The analysis filter architecture is shown in Fig. 2. The filter operates

as follows. The pixels are read from the memory row-wise. The

row-wise streaming was chosen due to the common raster scan out-

put of the camera. Therefore, streaming row-by-row is a reasonable

choice as it reduces the access time to memory thanks to the sequen-

tial address access. K pixels are buffered in a shift register, where

K is the length of the used 1-D filter. The pixels in the register are

shifted with the arrival of each new pixel. All K pixels are available

at the output and they are used by 1-D row filter.

The row filter provides horizontally filtered pixels at its output.

In standard separable filter implementations, these filtered pixels are

stored in memory, transposed and filtered again. However, using

the proposed architecture, we avoid storing and transposing the full

frame. The intermediate memory is replaced by a chain of K − 1
line buffers, which are implemented as BlockRAMs in FPGA.

Furthermore, not all filtered pixels are needed in the subsequent

stages. Hence, we introduce two new blocks, named Column con-

trol logic and Row control logic in Fig. 2. Since the filtered image

will be downsampled, we distribute the downsampling operation into



Shift register

1D �lter

B
R
A
M

B
R
A
M

B
R
A
M

M
E
M
O
R
Y

Out
1-D �lter

K pixels

 Row �lter

 Column �lter

 K-1 BRAM
chain

Column

control

logic

Row control logic

Fig. 2. Internal architecture of the 2-D separable filter. Both analysis

and synthesis filters are implemented using the same architecture,

with difference in control logic blocks. The difference is explained

in Sections 3.1 and 3.2.

row and column procedures, and embed it in the hardware filter. Af-

ter one pixel is filtered by the row filter, the Column control logic

disables filtering for the next pixel, i.e. pixel positioned in the next

column. After skipping one pixel, the control logic again enables

the filter. This principle is repeated for all pixels in the image, and it

corresponds to horizontal downsampling by two.

The pixels belonging to the same row are buffered in the same

BlockRAM, and only K−1 half-rows are stored in this chain thanks

to the control logic. Whenever a new filtered pixel arrives, it is stored

in the first BlockRAM at the location addressed by the pixel’s col-

umn in the frame. Since the utilized BlockRAMs behave as a dual-

port memory, the second port is used for reading the pixel from the

same memory location, i.e. the pixel in the same column from the

previous row. The read pixel is then stored in the following Block-

RAM in the chain. Hence, this BlockRAM chain can also be re-

garded as a set of stacked shift registers.

The outputs of K−1 BlockRAMs and the output of the row filter

form a set of K vertically neighbouring pixels. Hence, the transposi-

tion is no longer required, as the pixels are available in the appropri-

ate order. Similar to Column control logic, Row control logic block

disables filtering of every second row in the column filter. It is im-

portant to note that even when column filtering is disabled, shifting

of pixels between BlockRAMs is enabled. This is obligatory due to

the fact that one source pixel contributes to (K+1)/2 filtered pixels

in a single column.

The pixels allowed through the Row control logic are filtered

using the second 1-D filter (column filter in Fig. 2) and streamed out

to the rest of the processing system. The outputs are sorted in the

same order as the original input, in the row-wise order.

3.2. Synthesis Filter Architecture

Opposite to the analysis filter H(z) that downsamples the image, the

synthesis filter G(z) upsamples it. A property of the upsampling

operation is that output data rate of the filter is higher than at the

input. We implement a time-multiplex system to resolve this issue,

under the safe assumption that the processing block in Fig. 1 does

not increase the data rate.

The synthesis filter is implemented using the same top-level ar-
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Fig. 3. System performance of the LP decomposition and recon-

struction for different frame sizes. The full blue line represents op-

erating frequencies and the dashed red line represents the achieved

frame rates.

chitecture as the analysis filter. The main difference is in the control

logic blocks of the synthesis filter, since it multiplexes the input pix-

els with the upsampled zero-valued pixels. When the filter receives a

pixel from ith column, the Column control logic allows the row filter

to output pixel from i− (K − 1)/2 column. In the following clock

cycle, the logic will enable the filter to output the i − (K + 1)/2
column. The insertion is allowed because of two reasons: (1) the

corresponding input pixel for the second output pixel is zero, and (2)

the assumption that input data rate is not faster than the output rate of

the LP decomposition. Levels li, for i = {2, ..., L} cannot provide

pixels in each clock cycle, hence upsampling of the pyramid levels

can be embedded in the filtering operation. Level l1 is the only level

that can theoretically provide pixels every cycle, but its pixels are

not being filtered by G(z) during the reconstruction (see Fig. 1).

The line buffers store the upsampled rows. The Row control

logic operates on the same principle as Column control logic with

the exception that it inserts the row pixels. When column filter pro-

vides a pixel from ith row, the Row control logic enables the column

filter to output pixel from i− (K− 1)/2 row. In the following clock

cycle, a pixel from i − (K + 1)/2 row will be calculated. Hence,

reconstruction of each pyramid level provides interpolated image at

four times higher frame rate, which makes the real-time LP recon-

struction possible.

4. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed system was implemented on the Xilinx VC-707 de-

velopment board, with XC7VX485T-2FFG1761 Virtex 7 FPGA and

1 GB of DDR3 memory operating at 800 MHz. The system is de-

signed in Xilinx ISE 14.7 and synthesized using Xilinx XST. To

identify the correct performance and resource utilization of the ac-

celerator, the experimental results will correspond only to the pre-

sented hardware, i.e. excluding the DDR3 controller and µBlaze

microcontroller used for setting the filter parameters.

The design was synthesized for four different frame resolutions:

512 × 512, 640 × 480 (VGA), 1280 × 720 (720p) and 1920 × 1080

(1080p). The obtained operational frequencies are shown in Fig. 3

in blue color. The frequencies vary around 490 MHz, with 486 MHz

for a 1080p frame. Critical path of the system is in the control logic,
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Fig. 4. An example image used for image quality benchmark. The decomposed and reconstructed image using the accelerator presented in

this work (c) provides image with PSNR = 65.34 dB compared to the double-precision result from Matlab (b).

and not in the computational part, thanks to the pipelined architec-

ture. The XST confirms it by reporting the critical path in the part of

control block dedicated to edge extension for correct filtering. Thus,

a slight decrease in frequency observed in Fig. 3 is expected and re-

lates to a 1-bit increase in size of the counters counting up to the

maximum resolution. A significant increase of frequency for 512

× 512 frame is thanks to the frame size which is a power of two.

Hence, the counters do not require a comparator at the output, and

counter reset logic, since the counter cycles to zero without reset.

A change of filter order affects only the system latency. Fre-

quency change is negligible and not noticeable in operation. The

critical path remains the same, as it is not affected by the number

of coefficients, because the FIR filtering is implemented as a fully

pipelined block.

Fig. 3 also shows the achieved frame rate, in red color. The

frame rate is 234 frames per second (fps) for the largest tested frame

size (1080p), and 1604 fps for VGA frame. The achieved frame rates

are suitable for any state-of-the-art real-time application, even for

high frame resolutions. For comparison, the non-separable filtering

implementation [8] achieves 94 fps for 1080p frame. The design

in [17] reports around 45 fps for VGA frame, whereas its related

GPU implementation [16] achieves 233 fps. Finally, frame rate of

the multiprocessor implementation [13] is calculated to be 977 fps

for VGA frame, and 145 fps for 1080p.

The resource utilization summary is given in Table 1. The sys-

tem is synthesized for 1080p frame resolution and K = 5 filter size.

The presented work uses approximately 0.1% of the resources avail-

able on the selected Virtex 7 FPGA. Table 1 shows that the resource

utilization of the proposed design is lower than utilization of the di-

rect 2-D filter implementation from [8]. The pyramidal decomposi-

Table 1. FPGA device utilization summary

Resource This work [8] [4] [17]

Slice LUT 2015 5891 2730 1852

Slice Register 3307 7612 2812 1759

BlockRAM 24 14 38 –

DSP 30 0 – –

tion is isolated from the full system in [8] and synthesized separately,

to provide a fair comparison. Furthermore, resource utilization of

our system is comparable to other FPGA implementations [4, 17],

which have significantly lower frame rates. The comparison num-

bers are taken from the original publications. Utilization data for

[17] relates only to the reconfigurable filter design, and not the full

system. The mark “–” is used for the numbers which are not avail-

able.

The proposed design utilizes the clock gating technique to dis-

able filtering of unnecessary pixels. Hence, a reduction in dynamic

power consumption is reported by Xilinx Power Estimator (XPE)

tool. The chosen figure of merit (FOM) for comparison with the re-

lated systems is energy-per-processed-pixel. FOM of the proposed

architecture is 15.05 pJ/pixel, compared to 546 pJ/pixel of [8],

1nJ/pixel of [13], and 26nJ/pixel of [16].

Finally, Fig. 4 illustrates image results of the proposed hardware.

The original image (Fig. 4(a)) is decomposed and reconstructed us-

ing the proposed system with 16-bit fixed-point precision. The im-

age in Fig. 4(b) is obtained in Matlab R2014a and the default double-

precision. Fig. 4(c) is the simulation result of our system. The filter

coefficients and pixel luminance have 16-bit and 8-bit precision, re-

spectively. The filtered image from our system has PSNR = 65.34 dB

compared to the floating-point double-precision of Matlab, which

shows that there is no loss compared to the original 8-bit image.

5. CONCLUSION

In this paper, we proposed a high frame rate hardware accelerator for

pyramidal decomposition based on separable filtering. The acceler-

ator is based on a pipeline architecture, without the image transposi-

tion between row and column filters. Instead, a chain of line buffers

is used for partial frame storage. Furthermore, the architecture sup-

ports internal downsampling needed for pyramidal decomposition,

which significantly lowers the power consumption. The system of-

fers almost constant operating frequency, irrespective of the frame

resolution and the filter size. Finally, the low resource utilization

and compactness of the proposed implementation make this acceler-

ator an excellent choice for image decomposition on the low-power

mobile systems.
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