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ABSTRACT

Motivated by the problem of object tracking in video se-
quences, this paper presents a new Contextual Object Tracker
with Structural Encoding (CTSE). The novelty in our tracking
approach lies in the application of contextual and structural
information (that is specific to a target object) into a model-
free tracker. This is first achieved by including features from
a complementary region having correlated motion with the
target object. Second, a local structure that represents a spa-
tial constraint between features within the target object are
included. SIFT keypoints are used as features to encode both
these information. The tracking is done in three steps. Firstly,
keypoints are detected and described to encode object struc-
ture. Secondly, they are matched in every frame. Finally, each
matched keypoint votes for the target object location locally
in a voting matrix by using the encoded object structure. The
voting method gives more priority to the keypoints that have
been matched more often and are closest to the target’s center
than the rest. The proposed tracker is competitive with state-
of-the art trackers while being significantly faster. It ranks
as first or second most accurate tracker in experiments with
standard datasets.

Index Terms— Object tracking, Model-free tracking,
Context, Appearance model, Object structure, Keypoints

1. INTRODUCTION

Even after decades of research, object tracking in a real-world
unconstrained environment remains an arduous task. The core
problem in any tracking algorithm occurs due to abrupt and
frequent appearance changes of the target object because of
illumination, occlusion, scale and presence of objects having
similar appearance to the target object (distractors) in the en-
vironment. Several approaches have been proposed to design
strong appearance model, in order to discriminate an object
from the background and match that appearance model in ev-
ery frame, so as to have strong similarity measure for accu-
rate tracking. Still, it is difficult to simultaneously address the
problem of appearance changes caused by occlusion and illu-
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mination, and the problem of distractors. This paper presents
a tracking method that can jointly address these problems.

The previous research gives an appropriate direction to
solve these problems by focusing the target’s appearance
model – not only on the object’s region description but also
on the visual cues around the target object. The addition of
contextual information besides the target object’s region has
been shown successful in the domain of object recognition
[1] and semantic segmentation [2]. Approaches like [3], [4]
explore the use of context in tracking. Both methods create
a structure (topology) between correlated regions (having
similar motion) and the main target object, and exploit this
structure for object tracking. In recent work, the idea of using
contextual information is slightly different. In [5], they use
Supporters which are keypoint features spread over all the
image and not necessarily around the target object that bear a
correlated motion with the target. In [6], instead of using a set
of image features from the whole frame, authors use features
from the target itself and create an internal structure for all
such features. The first common aspect is the use of contex-
tual information. It is the data available from or around the
target object having a correlated motion with the target object.
The second common aspect is to use the structural informa-
tion between the target object and the correlated features for
efficient object tracking, thus dealing with distractors.

Another inspiration for our tracker comes from part-based
trackers [7], [8], [9], where the target object is described by
decomposing the objects region description into parts or
patches. In [7], they use generative representation that belong
to the target object only with patches pre-defined in a grid.
These patches vote for the target object position in a competi-
tive approach. However, their method becomes inappropriate
for tracking non-rigid objects as the grid is unable to adjust to
changes that occur due to deformations. In [8], they sample
a set of overlapped patches and track object using visible
patches during partial occlusion. In [9], they propose to use
a histogram based model to encode the object structure. Part-
based trackers like [10] and model-free trackers like [11],
[12], [13], use discriminative representation and learning
approaches to distinguish the target object from the back-
ground. From this, the common aspect is that decomposing
the object’s region is robust to partial occlusions.
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(a) Target Region (b) ROI (Region of Interest) (c) Voting by keypoints (d) Final Output

Fig. 1: Proposed Tracking Method (a) Target Region (b) ROI (Target + Complementary Region (below the red line)) (c) Voting
by keypoints (green dots) for the target location (red dot) (d) Final Output by tracker

This paper presents a new model-based tracker enti-
tled the Contextual Object Tracker with Structural Encoding
(CTSE). It takes as input all the information about the target
object and its context from the first frame and then tries to
locate and update this pattern of input correctly for the rest
of the video sequences. The CTSE is illustrated in Figure 1
and follows a three step process 1. First, SIFT keypoints are
extracted and described for the ROI (target + complemen-
tary). They provide invariance to illumination and robustness
against distractors. The local structure for the target region is
also computed. This provides the robustness against occlu-
sion because the location of the target is described uniquely
with respect to each individual keypoints. Thus, each key-
point behaves as a part of the object’s region description.
Second, these keypoints are matched, and each matching
keypoint votes individually for the target position in a voting
matrix. Third, in locations where multiple votes form a clus-
ter, the global maximum of the obtained votes is selected as
the final target location. Finally, the model is updated. Some
key contributions to the state-of-the-art are as follows :

1. Keypoints having a structure spatial constraint and a
motion correlation with the target center, are shown to
be robust features for object tracking. Hence, principles
from both context and structure may be combined into
object tracking.

2. To achieve greater tracking accuracy, the inherent noise
of the tracking method is modulated by utilizing a tech-
nique called voting by keypoints. In this, the voting for
the target location is done using the structural configu-
ration of each feature (keypoint).

3. The quality for every keypoint feature is estimated by
maintaining a structural configuration for each key-
point. This helps in achieving a finer global prediction
for the target location in every frame. The structural
configuration is updated on the fly so as to accommo-
date the appearance changes.

Section 2 describes our appearance model and the tracking
method. Section 3 describes the update steps for the structural
configuration for a keypoint. Section 4 includes experimen-
tal results, and Section 5 draws conclusions. Results of the

1https://bitbucket.org/tanushri/ctse

proposed tracker are compared to reference trackers using the
video sequences in [14], and [6] respectively.

2. TRACKING METHOD

Generally, a tracking algorithm includes two main compo-
nents: (1) appearance model that represents the characteris-
tics of the target object, and (2) a search strategy to estimate
the target’s position in every frame.

2.1. Appearance model (target and complementary re-
gion)

Considering the underlying concept of model-free tracking,
our tracker is initialized in the first frame by annotating a
bounding box and a complementary region for a target face
as shown in Figure 1b. Using this as our region of interest,
SIFT keypoints are first detected all over the frame and then
the keypoints contained inside the ROI are stored. Consider a
target with a set of keypoints in the appearance model stored
in a vector K. Let each keypoint be denoted by ki, such that
ki ∈ K. We used SIFT keypoints as literature has shown that
they are invariant to scale, translation, illumination and can
handle small rotation variation, which makes it a very suit-
able feature for object tracking [15].

2.1.1. Encoding structure

As soon as the keypoints are detected and their descriptors
are computed, a structural configuration for each keypoint is
initialized. The structural configuration is represented as Ski

= [dki , Xki , Cki , pki ] and consists of the following:

1. dki = descriptor of keypoint
2. Xki

[∆x,∆y] (Spatial Constraint Vector) = Describes
the keypoints location with respect to the target center.

3. Cki (Correlation Factor) = Indicates the keypoint’s mo-
tion correlation with respect to the target center.

4. pki
(Proximity Factor) = Describes the importance

of the keypoint’s proximity to the target center. A
keypoint located nearby to the target center will have
higher proximity value as compared to others. It has a



direct effect on the Cki parameter of keypoint configu-
ration as we will see in later subsections.

The encoded structure with spatial constraints helps in
predicting the target’s position in the next frame as the struc-
ture will remain mostly unchanged for the future frames of
the video sequences. Therefore, when the target moves in the
next frame, the points that have a correlated motion with the
target center will also move by the same spatial translation
in the next frame, but the relative distance (spatial constraint
vector, Xki

) of these points from the center will be constant.
Hence, by re-detecting and matching the same keypoints as
present in the appearance model for a target in the next frame
t+1, we can estimate the new position of the target. The ad-
vantage of using such a structure aids in tracking during oc-
clusion because even if a single keypoint is matched during
occlusion (as rest of the keypoints will be hidden), the target
object can still be tracked.

2.2. Search strategy

First SIFT keypoints are detected and described in the whole
frame. These are matched with those present in the appear-
ance model by comparing the Euclidean distance similarity
between their descriptors. The advantage of detecting the
keypoints in the whole frame helps in matching keypoints
with the appearance model even if the target undergoes large
or abrupt motion. The keypoint matching outputs a region
with keypoints that co-occur with those present in the appear-
ance model. We use a similar criteria as used [16] for remov-
ing erroneous matches and keep only those matches that have
a distance ratio less than 0.8. The matching output gives a
region, which is a coarse estimation of the target. Therefore,
for finer prediction of the target location we have to use a dif-
ferent strategy called voting by keypoints.

2.2.1. Voting by keypoints using encoding structure

During tracking, there is inherent noise of the system, which
will influence the target’s center prediction by each keypoint.
Therefore, we consider this inherent noise while estimating
the final target location. We assume that all the pixels in the
frame are affected by the same inherent noise and associate
a single Gaussian pdf (probability density function) to all ki.
We want to vote in such a manner that a pixel on a patch
around ki, will have the highest vote with its closeness to the
patch’s center indicated by ki (similar to a Gaussian function).
Thus, ki votes for the target’s center by using its Xki parame-
ter of Ski

. Lets say the current position of ki is x in the frame
t and its corresponding structural spatial constraint is denoted
by Xki

. Hence, the Gaussian pdf with which ki will cast its
vote can be written as:

P (x|ki) ∝
1√

2π|Σ|
exp(−0.5(x−X)T Σ−1(x−X)) (1)

Here, Σ is a covariance matrix. Therefore, the local pre-
diction by given ki for the target’s new center location is given
by:

xLocPredki
= P (x|ki)Cki1(ki∈K) (2)

Hence, each keypoint votes for the target’s center loca-
tion with a Gaussian pdf and its Correlation factor Cki and
1(k(i)∈K) is an indicator function, which is set to one for key-
points that are matched in current frame. All such individual
votes are summarized in a vote matrix. In order to select the
most probable location of the target center, we find the loca-
tion inside the vote matrix (VM) where the sum of individual
votes is highest, resulting in a cluster of votes. This shows that
a cluster of keypoints have voted for the same center location
for a target object. Hence, the final target center is given by
Equation 3, and is represented as follows :

xtargetCenter = arg maxx∈VM (

K∑
i=0

(P (x|ki)Cki
1(ki∈K)))

(3)

3. DETERMINING KEYPOINT QUALITY

3.1. Adaptive correlation and proximity factor

As seen from Equation 2, the correlation factor Cki
plays a

major contribution in determining the global prediction for
the target center. Initially all the keypoints in K are assigned
with an initial value for Cki

. With every new frame processed
t, the Cki parameter value in the structural configuration of
keypoint ki updates with learning factor, α using Equation 4
as follows:

Ct+1
ki

= (1− α)Ct
ki

+ αptki
1(ki∈K) (4)

Here the term ptki
represents the proximity factor for a

particular keypoint, ki at frame t. The pki
for a particular

varies non-linearly with its closeness to the target’s center and
is evaluated by using a function, given by the following Equa-
tion 5:

ptki
= max((1−|λ(xTargetCenter−xLocPredki

)|), 0.0) (5)

Here λ is a constant. Hence, a keypoint that is closer to the
predicted target center ( xTargetCenter), will have more im-
portance in contributing its vote for in the Gaussian pdf (Refer
Equation 2) in the next frame t + 1, than those which are far
from the target center. By doing this, we achieve higher ac-
curacy for target center location because even if certain key-
points that are erroneously matched, they will have a very less
contribution in vote matrix. For the rest of the keypoints that
have not been matched, their Cki reduces (Refer Equation 4).

4. EXPERIMENTAL RESULTS

For comparison, we use state-of-the-art evaluation criteria
namely, bounding box Overlap Ratio (OR) and average Cen-
ter Location Error (CLE). OR is the average percentage of



Table 1: Comparison of CLE and OR of proposed tracker with respect to state-of-the-art part-based trackers. Bold red indicates
the best results and blue italics indicates the second best.

Videos SPT[10] SCMT[9] AST[8] SAT[6] CTSE(proposed) CTSE(no context)
CLE OR CLE OR CLE OR CLE OR CLE OR CLE OR

FaceOcc1 116.84 0.05 5.07 1.00 85.43 0.25 14.26 0.99 3.77 1.00 3.89 1.00
Girl 8.97 0.84 201.27 0.19 53.42 0.17 10.01 0.84 10.52 0.78 10.61 0.78
David 36.09 0.62 33.81 0.60 68.57 0.37 10.48 1.00 26.38 0.60 26.38 0.60
Cliff bar 22.11 0.51 77.31 0.24 35.35 0.69 25.33 0.60 26.13 0.51 20.68 0.59
jp1 35.21 0.18 17.74 0.78 16.66 0.84 7.03 0.89 5.95 0.99 5.95 0.99
jp2 30.58 0.39 69.44 0.55 45.15 0.55 7.25 0.93 3.91 0.99 3.91 0.99
wdesk 79.92 0.13 34.17 0.57 80.97 0.32 11.12 0.90 11.23 0.85 11.23 0.85
wbook 11.27 0.98 5.09 1.00 8.68 0.99 11.87 0.99 6.92 0.99 6.92 0.99

frames where the overlap of BB’s (bounding boxes) of tracker
and ground truth is at least 50%. CLE is the Euclidean dis-
tance between the center’s of BB’s of tracking output and
ground truth. The videos for validation have the following
attributes: partial and long term occlusion (FaceOcc1, [7],
wbook and wdesk, [6]), illumination, large camera motion
and background change (David, [11], Girl, [17]), Back-
ground Clutter (Cliffbar[11]), and moderately crowded scene
(jp1, jp2 [6]). As seen from Table 1, the performance of
our method is very good for scenes with distractors, jp1,
jp2. Our method delivers a precision of 0.99 with the least
error as compared to rest of the trackers, because the encoded
structure and keypoints prevents the tracker from switching
to distractors. The voting by keypoints using the structure
helps in greatly reducing the error. The encoded structure
with the complementary region helps in prediction of target
during long-term partial occlusion with a precision of 1.00 in
FaceOcc1, 0.85 in wdesk, and 0.99 in wbook, as the subset of
features help in target prediction even when a significant part
of the target object remains hidden for a long time. For David
and Girl, our method gives a competitive performance with
the ability to track objects during large camera motion and
illumination change. When experimented our tracker with-
out a complementary region (no context), the error slightly
increases for FaceOcc1, and Girl, as the target region re-
mains hidden for sometime. This results in lesser matching,
and lesser impact of correlation factor in voting. Whereas
for Cliffbar, the results significantly improve without the
context, as the complementary region takes into account the
background region with no motion correlation with the tar-
get, which is otherwise observed in videos having torso and
head (FaceOcc1,Girl). Note, if both (head+torso) are oc-
cluded at the same time, the context is less advantageous, and
thus being scenario dependent. Hence, context is useful for
videos where other objects have correlated motion with the
target. For a typical 320x240 resolution video sequence, our
tracker runs with 10 frames per second on Intel Core i7, 3.40
GHz machine. Figure 2 shows the qualitative results of our

tracking method.

Fig. 2: Qualitative Results. From left to right row-wise and
top to bottom : Girl, jp1, jp2 , Cliffbar video sequences.

5. CONCLUSION

In this paper, a new tracker has been proposed that combines
the concept of context and structure for object tracking. Ex-
perimental results have shown that using keypoint features
that have a correlated motion with the target center and that
are organized in a structure having spatial constraints with re-
spect to the target center, are robust features for object track-
ing in video sequences. Our results emphasize that by adapt-
ing the structural configuration parameters of the keypoints,
improves tracking for challenges such as partial and long-
term occlusion, illumination, and distractors, etc. However,
the robustness of our tracker depends on the keypoint detec-
tor. The future research will seek to increase the precision of
our tracker by combining a detector with our method.
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