arXiv:1602.01818v1 [cs.CV] 4 Feb 2016

RANDOM FEATURE MAPS VIA A LAYERED RANDOM PROJECTION (LARP)
FRAMEWORK FOR OBJECT CLASSIFICATION

A. G. Chung, M. J. Shafiee, and A. Wong

Vision & Image Processing Research Group, System Design Engineering Dept., University of Waterloo
{agchung, mjshafie, a28wong } @uwaterloo.ca

ABSTRACT

The approximation of nonlinear kernels via linear feature
maps has recently gained interest due to their applications
in reducing the training and testing time of kernel-based
learning algorithms. Current random projection methods
avoid the curse of dimensionality by embedding the nonlin-
ear feature space into a low dimensional Euclidean space to
create nonlinear kernels. We introduce a Layered Random
Projection (LaRP) framework, where we model the linear
kernels and nonlinearity separately for increased training ef-
ficiency. The proposed LaRP framework was assessed using
the MNIST hand-written digits database and the COIL-100
object database, and showed notable improvement in object
classification performance relative to other state-of-the-art
random projection methods.

Index Terms— Multi-layer random projection, random
feature maps, object classification, MNIST, COIL-100.

1. INTRODUCTION

The approximation of nonlinear kernels has recently gained
popularity due to their ability to implicitly learn nonlinear
functions using explicit linear feature spaces [[1]. These lin-
ear feature spaces are typically high (or often infinite) dimen-
sional, and pose what is referred to as the curse of dimension-
ality. To avoid the cost of explicitly working in these feature
spaces, the well-known kernel trick [2]] is employed where
rather than directly learning a classifier in IRY, a nonlinear
mapping ® : RY — # is considered such that for all x, y
e RY, (B(x), D(y))y = K(x, y) for some kernel K(x, y). A
classifier H : x — w? ®(x) is then learned for some w € H.
While this appears to solve the curse of dimensionality, it
leads to an entirely new problem referred to as the curse of
support. The support of w can undergo unbounded growth
with increasing training data size, resulting in increased train-
ing and testing time [3}/4]. Though kernel approximation
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methods have been used successfully in a variety of data anal-
ysis tasks, this issue with scalability is becoming more cru-
cial with the advent of big data applications [5}/6]. Initially
proposed by Rahimi and Recht [[7]], previous kernel approxi-
mation methods have attempted to address the curse of sup-
port by the low-distortion embedding of the nonlinear fea-
ture space H into a low dimensional Euclidean inner product
space via a randomized feature map [[7H10].

Rahimi and Recht [7] proposed a method for extracting
random features via the mapping of the input data to a ran-
domized low-dimensional feature space before applying fast
linear methods. Designed to approximate a user specified
shift-invariant kernel, Rahimi and Recht evaluated two sets of
random features, showing that linear machine learning meth-
ods outperformed state-of-the-art large-scale kernel machines
in large-scale classification and regression tasks.

Inspired by [7], Kar and Karnick [8] presented feature
maps approximating positive definite dot product kernels via
the low-distortion embeddings of dot product kernels into lin-
ear Euclidean spaces. Kar and Karnick demonstrated their ap-
proach using both homogeneous and non-homogeneous poly-
nomial kernels, as well as the generalization of their approach
to compositional kernels. While some experiments resulted
in a moderate decrease in classification accuracy, the authors
noted that this decrease was almost always accompanied by a
significant increase in training and test speeds.

Similarly based on [7]], Le et al. [9] proposed Fastfood, an
approximation method that focuses on significantly decreas-
ing the computational and memory costs associated with ker-
nel methods. Using Hadamard matrices combined with di-
agonal Gaussian matrices in place of dense Gaussian random
matrices, the kernel approximation was shown to have low
variance and be unbiased. Le et al. achieved similar ac-
curacy to full kernel expansions while being approximately
100x faster and using 1000x less memory.

Pham and Pagh [10]] presented a novel fast and scalable
randomized tensor product technique called Tensor Sketching
for efficiently approximating polynomial kernels. The images
of data were randomly projected without computing the corre-
sponding coordinates in the polynomial feature space, allow-
ing for the fast computation of unbiased estimators. Similar
to [9]l, Pham and Pagh demonstrated an increase in accuracy
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Fig. 1: The proposed Layered Random Projection (LaRP) framework. The framework is comprised of alternating layers of:
i) linear, localized random projection ensembles (LRPE layers), and ii) non-saturating, global nonlinearities (NONL layers) to

allow for complex, nonlinear random projections.

while running orders of magnitude faster than other state-of-
the-art methods on large-scale real-world datasets.

More recently, Hamid et al. [11] proposed compact ran-
dom feature maps (CRAFTMaps) as a concise representation
of random features maps that accurately approximate poly-
nomial kernels. Taking advantage of the rank deficiency of
the spaces constructed by random feature maps, CRAFTMaps
achieves this concise representation by up projecting the orig-
inal data nonlinearly before linearly down projecting the vec-
tors to capture the underlying structure of the random feature
space. Hamid ef al. demonstrated the rank deficiency in the
kernel approximations presented by [8]] and [10]], and showed
improved test classification errors on multiple datasets by us-
ing CRAFTMaps on [8]] and [10] in comparison the original
random feature maps.

While these state-of-the-art nonlinear random projec-
tion methods have been demonstrated to provide significantly
improved accuracy and reduced computational costs on large-
scale real-world datasets, they have all primarily focused on
embedding nonlinear feature spaces into low dimensional
spaces to create nonlinear kernels. As such, alternative
strategies for achieving low complexity, nonlinear random
projection beyond such kernel methods have not been well-
explored, and can have strong potential for improved accuracy
and reduced complexity.

In this work, we propose a novel method for mod-
elling nonlinear kernels using a Layered Random Projection
(LaRP) framework. Contrary to existing kernel methods,
LaRP models nonlinear kernels as alternating layers of linear
kernel ensembles and nonlinearities. This strategy allows the
proposed LaRP framework to overcome the curse of dimen-
sionality while producing more compact and discriminative
random features.

2. METHODS

In this paper, we introduce a Layered Random Projection
(LaRP) framework for object classification. The LaRP frame-

work (shown in Figure[I)) consists of alternating layers of: i)
linear, localized random projection ensembles (LRPEs) and
ii) non-saturating, global nonlinearities (NONLs). The com-
bination of these layers allows for complex, nonlinear ran-
dom projections that can produce more discriminative fea-
tures than can be provided by existing linear random projec-
tion approaches.

2.1. Localized Random Projection Ensemble (LRPE)
Layer

Data is projected onto an alternative feature space using ran-
dom matrices. Each LRPE sequencing layer ¢ (Figure[2) con-
sists of an ensemble of NV; localized random projections that
project input feature maps from the previous layer, X ;—1,

to random feature spaces via banded Toeplitz matrices Mj ;,
resulting in output feature maps Y; ;:
Yii = MjiXy i1, (D

where the banded Toeplitz matrix Mj ; is a sparse matrix with
a support of ns and can be expressed in the form of:

Kii 0 0 0
0 Ki;, 0 ... 0
0 0 ~R%J e 0 (2)
0 0 ... 0 K

M ; can be fully characterized by a random projection kernel
Kji; = ko k1 ... kn,—1]. The sparsity in M; ; allows for
fast matrix operations and, as a result, facilitates fast localized
random projections.

Each kemel Kj; is randomly generated based on a
learned distribution P;;. In this work, P;; is a uniform
distribution where the upper and lower bounds of the distri-
bution, [a, b], are learned during the training process.
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Fig. 2: Each localized random projection ensemble (LRPE)
sequencing layer consists of an ensemble of NV, localized ran-
dom projections to project input feature maps from the previ-
ous layer to new random feature spaces via banded Toeplitz
matrices.

2.2. Nonlinearity (NONL) Layer

The output feature maps from a LRPE layer is fed into a
nonlinearity (NONL) layer. Each NONL layer consists of
an absolute value rectification (AVR) followed by a sliding-
window median regularization (SMR).
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Fig. 3: Each nonlinearity (NONL) layer consists of an ab-
solute value rectification (AVR) to introduce non-saturating
nonlinearity into the layered random projection framework,
followed by sliding-window median regularization (SMR) to
improve robustness to uncertainties in the data.

An absolute value rectification (AVR) is first applied to
an output feature map from the preceding LRPE sequencing
layer (i.e., Y} ;) to produced the rectified feature map ij‘ft,
and can be defined as follows:

Vit =¥l 3

The purpose of AVR is to introduce non-saturating nonlinear-
ity into the input feature map to allow for complex, non-linear
random projections.

The AVR is followed by a sliding-window median regu-
larization (SMR) applied to the rectified feature map Yﬁ‘f“.
This SMR produces the final output of a pair of LRPE and
NONL layers X ;, and can be defined as

X;.i(w,y) = Median(Y:< (z, y)|R) @

where R is a sliding window, and is used to nonlinearly
enforce spatial consistency within the rectified feature map
Y]{‘Z?Ct. A 3x3 sliding window is used in this study as it was
empirically shown to provide a good balance between spatial
consistency and feature map information preservation.

2.3. Training LaRP

Each random projection kernel K ; characterizing the ran-
dom projection matrices in the proposed LaRP framework has
two parameters that needs to be trained: the upper and lower
bounds of the uniform distribution, [a, b]. The total number of
parameters to be trained in the LaRP framework is Zfﬁl 2N,
where N is the number of layers. In this work, the LaRP
framework is trained via iterative scaled conjugate gradient

optimization using cross-entropy as the objective function.

3. RESULTS

3.1. Experimental Setup

To assess the efficacy of the proposed LaRP framework for
object classification, our method was compared to state-of-
the-art random projection methods [7H11] via the MNIST
hand-written digits database [[12]] and the COIL-100 object
database [[13]]. The MNIST database was divided into training
and testing sets as specified by [[12]. Similar to [14] and [[15]],
the COIL-100 database was divided into two equally sized
partitions for training and testing; the training set consisted
of 36 views of each object at 10° intervals, and the remaining
views were used for testing. Figure [4] shows sample images
from the MNIST hand-written digits database (first row) and
the COIL-100 object database (second row).

»

Fig. 4: Sample images from the databases used for testing.
The first row shows sample images from the MNIST hand-
written digits database, and the second row shows samples
from the COIL-100 object database.
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Table 1: Test classification errors for MNIST and COIL-100 databases, with the best classification error for each database in
boldface. The proposed LaRP framework was compared against Fastfood [9], RKS [7], RFM [8]], TS [10]], and CM applied to
RFM and TS [11]]. Note that while Fastfood, RKS, RFM, TS, and CM used 2'2 and 2'° features, the proposed LaRP framework

used 20 random features.

Fastfood [9] RKS [7] RFM [8] TS [10] CMREM [11] | CM TS [11] | LaRP

212 21b 212 215 212 215 212 215 212 21b 212 21b 210
MNIST [12] 2.78 | 1.87 | 294 | 1.91 | 3.17 | 1.62 | 3.25 | 1.65 | 3.09 1.52 290 | 1.44 | 130
COIL-100 [13]] | 7.83 | 5.21 | 7.36 | 4.81 | 7.55 | 4.83 | 7.19 | 4.27 | 6.86 | 4.08 5.97 | 3.96 | 0.36
Table 2] summarizes the number of localized random pro- 215 features to generate comparable test classification errors,

jections and the supports of the random projection matrices
used in each LRPE sequencing layer for the proposed LaRP
framework in this study.

Table 2: Summary of number of localized random projections
and supports of the random projection matrices at each LRPE
sequencing layer for the LaRP framework used in this study.

LRPE Number of Projection
Sequencing . . Matrix Support
Projections
Layer (ns)
1 512 25
2 512 25
3 1024 25

The proposed LaRP framework characterizes a given im-
age using 2'° random features. The test classification errors
for the state-of-the-art methods were obtained from [11f]. As
the test classification errors for the state-of-the-art methods
were unavailable for 210 features, the classification errors of
the state-of-the-art methods using 2'2 and 25 features were
used for comparison.

3.2. Experimental Results

Table [T] shows the test classification errors for the proposed
LaRP framework and state-of-the-art methods Fastfood [9]],
RKS [7], REM [_8], TS [10], and CM applied to RFM and
TS [11] using the MNIST and COIL-100 databases. The test
classification errors clearly indicate that the proposed LaRP
framework outperformed the state-of-the-art methods.

The proposed LaRP framework achieved test classifica-
tion error improvements of 1.48 and 0.14 over the best state-
of-the-art results using 2'? and 2'° features, respectively,
for the MNIST database. Similarly, LaRP outperformed
the state-of-the-art methods using the COIL-100 database,
showing test classification error improvements of 5.61 and
3.60 over the best state-of-the-art results using 2'? and 2'°
features, respectively.

In addition to the notable test classification error im-
provements, it can also be observed that the proposed LaRP
framework achieved these results using significantly fewer
random features. While the state-of-the-art methods require

the LaRP framework attained better test classification errors
using 2'0 features. This indicates that the LaRP framework
is capable of generating more compact and discriminative
random features relative to state-of-the-art methods.

4. CONCLUSION

A novel Layered Random Projection (LaRP) framework was
presented, where we overcome the curse of dimensionality
and model the linear kernels and nonlinearity separately. This
is done via alternating layers of i) linear, localized random
projection ensembles (LRPE layers), and ii) non-saturating,
global nonlinearities (NONL layers) to allow for complex,
nonlinear random projections.

The proposed LaRP framework was evaluated against
state-of-the-art random kernel approximation methods using
the MNIST and COIL-100 databases. Generating 2'° random
features, the LaRP framework achieved the lowest test classi-
fication errors for both databases (1.30 for MNIST, 0.36 for
COIL-100) when compared to the state-of-the-art methods
using 2'2 and 2'° random features. This indicates the poten-
tial of the proposed LaRP framework for producing useful
and compact feature maps for object classification.

Future work includes the investigation of inter-kernel in-
formation and its effects on the generated random features
maps. As well, comprehensive evaluation and investigation
of the LaRP framework for different image recognition and
processing tasks and applications, e.g., saliency, segmenta-
tion, etc., will be conducted.
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