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Abstract—This paper presents a novel algorithm that aims at
minimizing the required decoding energy by exploiting a general
energy model for HEVC-decoder solutions. We incorporate the
energy model into the HEVC encoder such that it is capable of
constructing a bit stream whose decoding process consumes less
energy than the decoding process of a conventional bit stream. To
achieve this, we propose to extend the traditional Rate-Distortion-
Optimization scheme to a Decoding-Energy-Rate-Distortion ap-
proach. To obtain fast encoding decisions in the optimization
process, we derive a fixed relation between the quantization
parameter and the Lagrange multiplier for energy optimiza-
tion. Our experiments show that this concept is applicable for
intraframe-coded videos and that for local playback as well as
online streaming scenarios, up to 15% of the decoding energy can
be saved at the expense of a bitrate increase of approximately
the same magnitude.

Keywords—HEVC, energy, decoder, model, rate-distortion-
optimization.

I. INTRODUCTION

Nowadays, portable devices such as smartphones or tablet
PCs have become an indispensable gadget for millions of users
all over the world. A major drawback of these devices is that
the battery capacity in conjunction with the power consump-
tion of the system limits the operating time of the device.
Hence, research aiming at reducing the power consumption of
a process is a worthwhile task.

This paper addresses the power consumption of the video
decoding process. Analyzing the power consumption of a
portable device it was shown that during video playback,
the decoding process consumes a major part of the battery
power [1]. To reduce the power consumption, great effort is
pursued to optimize decoder implementations, not only on the
software side [2], but also on the hardware side [3]–[5]. Using
these techniques, energy can be saved in the range of several
orders of magnitude. In this paper we proceed in a different
direction and tackle the following question: If we have given a
fixed (and maybe optimized) decoder solution, is it possible to
further reduce the decoding energy using knowledge about its
energetic properties? In this paper, we show that for intraframe
coded videos this is indeed possible.

To address this problem, we propose to construct bit
streams that consume less energy during the decoding pro-
cess than conventional bit streams. To this end, we provide
information about the energetic properties of the decoder to
the encoder such that it can exploit this knowledge to decide
for energy saving coding modes. This paper investigates how
much decoding energy can be saved when such knowledge is
available.

As in this context the decision criterion of the encoder
is changed, the resulting bit streams may have a lower rate-
distortion performance than before. That means that we trade
decoding energy against bitrate. At first glance this may seem
counter-intuitive as it is usually assumed that a larger bit
stream requires more energy during decoding. In contrast we
argue that depending on the encoding decision, the decoding
process may show a different complexity. E.g., we can encode
a so-called transform-skip flag. If the flag is false, an inverse,
computationally complex transform is performed requiring a
certain amount of processing energy. If the flag is true, the
transform is skipped and thus no additional processing energy
is required. We can see that, although both decisions are
expressed by only one bit, the required processing energy on
the decoder side may differ significantly.

There were similar works in the past where power or
processing complexity, which can be interpreted as an ap-
proximation to processing power, was investigated. E.g., Zhi-
hai He et al. [6] incorporated the encoding power into the
Rate-Distortion calculation to save energy on the encoder
side. Using the encoder’s processing complexity, this idea
has been deeply investigated, e.g., by Xiang Li et al. [7].
In another work, Yuwen He et al. [8] proposed a simple
decoding complexity model for the modules deblocking filter
and motion compensation and showed that operating times
can be extended using power-aware optimization criteria. A
more complex model for the decoder was presented by Ma
et al. [9] where on the decoder side, dynamic voltage and
frequency scaling is applied when the modeled processing
complexity is small enough. A different approach using a high-
level power model for a hardware-accelerated decoder is used
by Xin Li et al. [10]. In contrast, our approach uses energy
values obtained from real measurements for a high number of
different intraframe-coding tools such that more detailed and
more accurate energy estimates are obtained. Furthermore, our
work aims at optimizing the decoding energy at a constant
objective visual quality.

The paper is organized as follows: Section II revisits the
energy model that we use to obtain energy-aware encoding
decisions. Afterwards, Section III explains how this model is
incorporated into the encoder and according to which criteria
the encoding decisions are taken. Then, Section IV introduces
our test setup and gives evaluation results for the proposed
algorithm in a local playback and a streaming scenario. Section
V concludes the paper.

II. DECODER ENERGY MODEL

The energy model that we use to describe the energy
consumption of the decoder was presented in [11] and is
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applicable for various different decoding systems [12]. It
includes the processing energy of the CPU as well as the
energy required by the random-access-memory (RAM). We
adopt the accurate model to estimate the decoding energy for
intra coded sequences that is calculated by

Êdec = E0 + eslice · nslice

+
∑

∀size

(

∑

∀mode

emode,size · nmode,size

)

+
∑

∀size





∑

∀comp

ecomp,size · ncomp,size





+ ecoeff · ncoeff + eg1 · ng1

+ eval ·
∑

∀c 6=0

log2 |c|+ eCSBF · nCSBF

+ enoMPM · nnoMPM − eTSF · nTSF. (1)

In this model, the values of the variables e (“specific energies”)
represent the energy required for executing different functions
during the decoding process. These functions can be executed
multiple times. For example, the coefficient ecoeff can be
interpreted as the energy required to decode a single non-
zero residual coefficient, eg1 is the additional decoding energy
if the coefficient’s value is greater than one. Likewise, the
variables emode,size describe the intra-prediction process on
a certain block size that can range from 32 × 32 to 4 × 4.
CSBF corresponds to the coded subblock flags, MPM to the
most probable modes, and TSF to the transform skip flags.
ecomp,size, where comp represents the color components Y, U
and V, represents the energy required for transformation of the
residual coefficients. Further information about these specific
energies can be found online [13].

Counting how often these functions are executed during the
decoding process of a single bit stream the so-called feature
numbers n can be determined. Multiplying these numbers n
with the specific energies e, we obtain an estimation for the
complete required decoding energy. In [11] it was shown that
estimation errors of less than 3% with respect to the measured
true energy consumption can be achieved.

There are two important reasons for choosing this model:
First, if specific energies are given, the decoding energy can
be estimated without having to execute the decoding process
or having the decoder at hand. The information about the bit
stream features, which is inherently available in the encoder,
is sufficient. Second, most of the specific energies can be
assigned to encoding decisions. An example shall visualize
this property: Consider the encoder needs to decide if residual
coefficients for the luma component on a certain block size
shall be coded or not. In the first option, a certain number ncoeff

of quantized coefficients will be coded where some of them are
greater than one (ng1). Furthermore, the inverse transformation
of this block has to be performed once (ncomp=luma,size = 1).
Multiplying the numbers with the corresponding specific en-
ergies and adding up the products we obtain an estimation on
how much energy the decoder needs to process these tasks. For
the second option, none of these tasks needs to be executed
such that no additional energy is required.

With the help of this approach, the encoder gets a third
encoding criterion next to rate and distortion: the decoding

energy that we exploit for Decoding-Energy-Rate-Distortion-
Optimization (DERDO) in the next section.

III. DECODING-ENERGY-RATE-DISTORTION

OPTIMIZATION

In order to obtain savings in decoding energy we decided
to modify the standard Rate-Distortion-Optimization (RDO)
approach as presented in [14]. Therefore, we include the
estimated decoding energy into the standard equation and
obtain

min JDERD = D + λRR+ λEÊ, (2)

where we adopt the parameters distortion D, rate R, and
the corresponding Lagrange multiplier λR from the classic
approach. In addition, we consider the estimated decoding
energy Ê with a corresponding Lagrange multiplier λE that
will be derived in the next subsection. JDERD is the cost
function to be minimized. During the encoding process, the
decoding energy Ê is estimated at runtime using (1).

Furthermore, we tested another approach neglecting the
rate by calculating

min JDED = D + λEÊ. (3)

The results to this approach will show the maximum potential
energy savings. As the rate is not considered at all it can
increase significantly. This approach is also used to obtain the
λE-QP relation as shown in the next subsection.

A. Lambda-QP Relation
A major challenge in constructing a helpful optimization

formula is finding a relation between the Lagrange multiplier
λE and the quantization parameter (QP). For optimal coding
results, the QP should be independent from the choice of
λE such that an exhaustive search across different QP values
would be necessary. To save encoding time, in standard RDO,
it was shown that for a fixed λR, a single QP is chosen in
most cases [15], [16], such that a fixed equation relating λR

to the QP is proposed as

λR = c · 2
QP−12

3 , (4)

where c = 0.57 has been determined experimentally and is
used for the HM encoder implementation [17].

We adopt this approach for DERDO and experimentally
determine the relation between the QP and λE. As decoding
energy model, we take specific energies for the HM imple-
mentation that will be introduced in Section IV.

To get a first coarse approximation for λE, we compared
the decoding energy to the complete number of bits for several
bit streams and found that the energy is usually lower by
approximately six orders of magnitude (e.g., the sequence
BasketballPass was encoded using 2.04 MBits and requires
1.78J for decoding). Hence, we multiplied the λ-values chosen
in the reference software by 5 ·106 and tested eleven values for
λE in the range of [5.65 ·105, 5.84 ·109]. To obtain the optimal
QP, it was optimized on CTU-level in the corresponding range
of [5±5, 45±5]. The resulting relative occurences are depicted
in Figure 1.

We can observe that distinct peaks occur especially for
lower values of λE. For higher QPs the peaks shrink and even
disappear. However, for simplification, we decided to stick to
the traditional approach and found that

λE = cE · 2
QP−12

3 (5)
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Fig. 1. Relative frequency of occurences of the QPs for the λE-values shown
in the legend. The tested input sequences are listed in Table I below.
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Fig. 2. Experimental relation between QP and λE. The markers correspond
to the maxima shown in Figure 1, the curve is the proposed approximation.

with cE = 0.57 · 107 is well suited to represent the relation.
Figure 2 shows the experimental relation between the dominant
QPs and the fixed λE as well as the curve described by (5).
We can see that for the more common intermediate QPs, the
experimental result is well approximated.

IV. EVALUATION

We prove the applicability of our approach by testing the
HM-13.0 decoder solution [17] and the optimized decoder
in the FFmpeg framework [2] on a Pandaboard [18]. The
Pandaboard is a development platform that is equipped with an
OMAP-4430 System-on-Chip that is typical for portable de-
vices like smartphones. To suppress impacts from background
processes or peripheral hardware, we performed the decoding
on runlevel 1 with disabled LEDs and disabled monitoring
tasks. The measurement setup used to determine the processing
energy of the pure decoding process is the same as in [19].

To estimate the decoding energy in the encoder, we used
the accurate model with energy parameter values for the HM-
decoder that can be found online [13]. For encoding, we
adapted the HM-14.0 encoder by incorporating the specific
energies e into the respective decision stages. To obtain the real
resulting energy savings, the decoding energy for all resulting
bit streams was newly measured. Hence, the results given in
this section describe the real energy savings and not the savings
estimated by the model which may be inaccurate.

As input sequences, we chose a subset of the HEVC test
set as shown in Table I. The restricted number of frames
was chosen to keep processing and measuring time at a
reasonable level, where further tests indicated that coding more
frames does not change the coding efficiency significantly. All

TABLE I. PROPERTIES OF INPUT SEQUENCES. THE SEQUENCES ARE

TAKEN FROM THE HEVC TEST SET AND WERE ENCODED BEGINNING WITH

THE FIRST FRAME WITH QPS RANGING FROM 15 TO 45 IN STEPS OF 5.

Sequence Class Resolution No. frames

PeopleOnStreet (PoS) A 2560 × 1600 5

Traffic (Tr) A 2560 × 1600 5

Kimono (Ki) B 1920 × 1080 16

RaceHorses (RHC) C 832 × 480 50

BasketballPass (BP) D 416 × 240 50

BlowingBubbles (BB) D 416 × 240 50

BQSquare (BQ) D 416 × 240 50

RaceHorses (RHD) D 416 × 240 50

vidyo3 (vid) E 1280 × 720 50

SlideEditing (SE) F 1280 × 720 50

sequences were encoded three times for optimal HM-decoding
where all frames were coded as intra frames: First, we used
the standard RDO and second, the proposed DERDO approach
as shown in (2). In the third approach (DEDO), the rate was
neglected as shown in (3).

We used the following three properties to compare the
performance of both algorithms: First the YUV-PSNR that is
calculated by

PSNRYUV =
1

8
(6 · PSNRY + PSNRU + PSNRV) , (6)

second the bitrate R in terms of bit stream file size, and
third the measured complete decoding energy E in Joule [J].
We evaluate the coding efficiency for two use cases: Local
playback that focuses on the pure processing energy (Sec.
IV-A) and an online streaming application where transmission
energies are considered (Sec. IV-B).

A. Local Playback

The results given in this section describe the energy savings
in a local playback scenario. Figures 3(a) and 3(b) compare
the RD-performance and the energy saving performance of the
proposed approaches for the BlowingBubbles sequence using
the HM-decoder. In Figure 3(a) we can see that as expected,
using the new minimization functions results in losses in
RD-performance. For the complete QP range, the RD-curves
from DEDO and DERDO lie below the curve from RDO. To
visualize how many more bits have to be spent to achieve the
same visual quality, the right diagram gives the relative amount
of extra bits needed for the proposed approach. We can see
that especially for high QPs (low image qualities) more bits
are required.

In contrast, regarding Fig. 3(b) we can see that a significant
amount of decoding energy can be saved. The right diagram
indicates possible savings of up to 15%. The curves of the
other sequences show a similar behavior, though we observed
that they can be shifted towards higher or lower rates and
energies depending on their content. Furthermore, we can see
that in terms of energy savings, the DEDO approach only
performs slightly better than the DERDO approach. As in
contrast DERDO shows a significantly lower bitrate increase,
this approach seems to be more appropriate for practical use.

To summarize the results, we calculated the Bjøntegaard-
Delta bitrate (BDBR) as proposed in [20] for all sequences and
both decoders. Furthermore, to give mean values for the energy
savings, we use the same approach but replace the bitrate by
the consumed energy and calculated a BD-decoding energy
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Fig. 3. Rate-Distortion (a) and Decoding-energy-distortion (b) performance of the standard RDO (blue lines) and the proposed DEDO (green lines) and DERDO
(red lines) approach for the BlowingBubbles sequence decoded with the HM-software. The left diagrams in each subfigure relate distortion with rate and energy,
respectively, where the markers depict the QPs ranging from 15 to 50 in steps of 5. The right diagrams in each subfigure show the relative bitrate increases and
energy savings in percentage in comparison to the standard RDO.

TABLE II. AVERAGE BITRATE INCREASES (BDBR) AND DECODING

ENERGY SAVINGS (BDDE) AS CALCULATED BY THE

BJØNTEGAARD-DELTA APPROACH (QPS 15, 25, 35, AND 45) FOR THE HM
AND THE FFMPEG DECODER.

DEDO DERDO

Seq. BDBR BDDE BDBR BDDE

HM FFmpeg HM FFmpeg

PoS 20.6% 17.4% 11.5% 16.4% 16.7% 10.3%

Tr 18.9% 16.9% 14.9% 15.3% 16.7% 14.2%

Ki 25.6% 10.6% 21.4% 21.3% 10.1% 19.2%

RHC 15.9% 15.0% 12.5% 12.5% 14.5% 11.0%

BP 22.8% 13.5% 12.8% 16.9% 12.9% 11.7%

BB 16.3% 15.8% 11.9% 12.4% 15.1% 10.8%

BQ 13.9% 9.9% 7.6% 9.9% 8.9% 5.9%

RHD 17.6% 14.8% 10.3% 13.0% 13.8% 9.4%

vid 28.7% 14.9% 17.4% 23.1% 14.2% 16.2%

SE 10.4% 6.3% 5.2% 6.7% 5.7% 5.5%

(BDDE). The resulting values for the HM decoder and the
FFmpeg decoder are summarized in Table II.

We can see that most energy can be saved for high
resolution sequences. Furthermore, optimizing the bit stream
for HM-decoding is also beneficial for a different decoding
solution (FFmpeg), though savings are slightly lower (about
2% in average). Interestingly, in some cases (sequence Ki
and vid) savings are higher for the FFmpeg solution, which
can be explained by inaccuracies in the energy model and
the estimated specific energies. Summing up, when using the
DERDO approach, accepting bitrate increases of 6% to 24%,
decoding energy can be saved in the range of 5% to 17%.

B. Online Streaming

In this subsection, in order to show how streaming of the
video bit stream affects the overall energy consumption, we
consider the transmission energy in a WiFi-streaming scenario.
Therefore, we take the energy model proposed in [21]. In this
model, a per-bit transmission energy Eb in nJ per bit can
be estimated depending on the throughput Th in megabit per
second as

Êb = a · Th−1 + b, (7)

where we take the values for parameter a = 305.3 and
b = 13.1 for a universal transmission model (independent
from protocol and packet size, values valid for a Google
Nexus smartphone). Analog to our approach estimating the
processing energy, we do not consider the idle transmission
energy required for sustaining the network connection.

TABLE III. AVERAGE BITRATE INCREASES AND DECODING ENERGY

SAVINGS AS CALCULATED BY THE BJØNTEGAARD-DELTA APPROACH

(QPS 15, 25, 35, AND 45) IN AN ONLINE STREAMING APPLICATION (THE

BDBR-VALUES ARE THE SAME AS IN TABLE II).

DEDO DERDO

Seq. BDBR BDDE BDBR BDDE

HM FFmpeg HM FFmpeg

PoS 20.6% 17.2% 11.1% 16.4% 15.6% 10.0%

Tr 18.9% 16.5% 14.5% 15.3% 15.6% 13.8%

Ki 25.6% 9.2% 19.9% 21.3% 7.9% 17.9%

RHC 15.9% 14.0% 10.1% 12.5% 12.9% 8.9%

BP 22.8% 11.4% 8.0% 16.9% 10.2% 7.3%

BB 16.3% 14.2% 8.3% 12.4% 12.9% 7.6%

BQ 13.9% 9.4% 5.5% 9.9% 7.8% 4.3%

RHD 17.6% 12.2% 6.1% 13.0% 10.8% 5.6%

vid 28.7% 13.7% 16.1% 23.1% 12.0% 15.0%

SE 10.4% 6.4% 4.6% 6.7% 5.5% 4.9%

To estimate the energy required in the streaming scenario,
we calculate the throughput Th of each test sequence (which
is the product of the bit stream file size R with the frame rate
divided by the number of frames), derive the corresponding
per-bit energy Êb (23−8000nJ per bit), and add the estimated
transmission energy (Êtr = R · Êb) to the measured decoding
energy. The resulting energy values are used to calculate the
Bjøntegaard-Delta values shown in Table III. We can see that
energy savings are about 0.3−3% lower, where especially low
resolution content is affected. For high resolution sequences,
due to a much lower per-bit energy resulting from higher
throughput, the transmission energy plays a minor role.

V. CONCLUSION

In this paper we showed that it is possible to encode
decoding-energy saving bit streams when the energetic prop-
erties of the decoding system are known to the encoder.
Decoding energy can be saved in the range of 5% to 17% at a
constant objective visual quality when accepting a compression
efficiency loss of 6% to 24% in terms of rate-distortion
performance. Online streaming only slightly affects the energy
savings. Further work will extend this concept to interframe
coding, test it on other decoding systems, and consider the
transmission energy directly in the optimization process.
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