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ABSTRACT

A discriminative dictionary learning algorithm is proposed
to find sparse signal representations using relative attributes
as the available semantic information. In contrast, existing
(discriminative) dictionary learning approaches utilize binary
label information to enhance the discriminative property of
the signal reconstruction residual, the sparse coding vectors
or both. Compared to binary attributes or labels, relative at-
tributes contain richer semantic information where the data
is annotated with the attributes’ strength. In this paper we
use the relative attributes of training data indirectly to learn
a discriminative dictionary. Precisely, we incorporate a rank
function for the attributes in the dictionary learning process.
In order to assess the quality of the obtained signals, we apply
k-means clustering algorithm to the obtained signals and mea-
sure the clustering performance. Experimental results con-
ducted on three datasets confirm that the proposed approach
outperforms the state-of-the-art label based dictionary learn-
ing algorithms.

Index Terms— Relative Attributes, Dictionary Learning,
Clustering

1. INTRODUCTION

The concept of sparse coding has become very popular in
many fields of engineering such as signal analysis and pro-
cessing [1], clustering and classification [2, 3, 4], and face
recognition [5]. The idea behind a sparse representation is to
approximate a signal by a linear combination of a small set
of elements from a so called over-complete dictionary. The
coding vector specifying the linear combination is the sparse
representation of the original input signal.

Considering a set of n input signals Y € RP*™, the goal is to
find a dictionary D = [dy,ds, ...,d,,] € RP** and the sparse
representation X € R¥*™ such that Y = DX, where the
term over-complete indicates k > n. Dictionaries can either
be predefined as in the form of wavelets [6], or be learned
from observations [7, 8, 9]. Also, many approaches have
been developed to impose discriminative capabilities onto
the dictionary learning process. However, those methods use
binary label information to acquire discriminative behavior.
In this work, we present an approach that utilizes relative at-

tributes instead of binary labels to enhance the discriminative
property of the dictionary. Relative attributes, as described in
[10], represent the strength of a set of predefined attributes
rather than only their appearance. This way of describing of-
ten seems more natural to humans. For example, is a gazelle
a big animal? That is hard to say. In the context of rela-
tive attributes one can say a gazelle is bigger than a cat but
smaller than an elephant. Just as previous discriminative dic-
tionary learning approaches that use binary label information
to enhance their discriminative capabilities, we incorporate
relative attributes into the dictionary learning process to give
the learning process some semantic information.

The rest of paper is organized as follows. In Section 2, related
work in the field of dictionary learning and relative attributes
is presented. Section 3 illustrates the proposed algorithm
and in Section 4 the experiments and results are presented.
Finally, we provide a summary and draw our conclusion in
Section 5.

2. RELATED WORK

The first approaches in the field of (reconstructive) dictionary
learning are the K-SVD algorithm [7] and the Method of Op-
timal Direction (MOD) [11], where no semantic information
is used in the learning process. An additional example for
the usage of sparse representation is the sparse representa-
tion based classification (SRC) [5] in which the dictionary is
built directly from the training data. A large field in dictio-
nary learning area is called Discriminative Dictionary Learn-
ing (DDL), where either the discriminative property of the
signal reconstruction residual, or the discriminative property
of the sparse representation itself is enhanced. Approaches
with a focus on the reconstruction residual are the work of
Ramirez et al. [12] which includes a structured incoherence
term to find independent sub-directories for each class and
the work of Gao et al. [13] where sub-dictionaries for the dif-
ferent classes are learned as well as a shared dictionary over
all classes.

Methods aiming at finding discriminative coding vectors learn
the dictionary and a classifier simultaneously. In the work
of Zhang et al. [8], the K-SVD algorithm is extended by a
linear classifier. Jiang et al. [14] included an additional dis-



criminative regularizer to come up with the so called label
consistent KSVD (LC-KSVD) algorithm. Both of these al-
gorithms show good results for classification and face recog-
nition tasks. The approach of Yang ef al. [15] combines the
two types of DDL by taking the discriminative capabilities of
the reconstruction residual and the sparse representation into
account. Therefore, class specific sub-dictionaries are learned
while maintaining discriminative coding vectors by applying
the Fisher discrimination criterion. In the recent work of Cai
et al. [9], a new so called Support Vector Guided Dictionary
Learning (SVGDL) algorithm is presented where the discrim-
ination term consists of a weighted summation over squared
distances between the pairs of coding vectors. The algorithm
automatically assigns non-zero weights to critical vector pairs
(the support vectors) leading to a generalized good perfor-
mance in pattern recognition tasks.

2.1. Background

For the general problem formulation we assume Y =
[Y1,Y2,...Yn] to be the set of p-dimensional input sig-
nals, each belonging to one of C' (hidden) classes, X =
[€1,T2,...,xn] to be their corresponding k-dimensional
sparse representation and D € RP*F to be the dictionary.
Therefore, we formulate the dictionary learning problem as

<D, X >=argmin||[Y — DX||3+ A\ || X1, (1
D, X

with the regularization parameter A;. In order to take the rel-
ative attributes into account the objective function can be ex-
tended with an additional term £(X'), where

<D, X >=argmin ||[Y — DX||3 + A\ || X||1 + X2L(X).
D, X

@)
As additional information, the strength of M predefined at-
tributes, the so called relative attributes [10], for the input
signals are available. Those attributes, in contrast to binary
labels, represent the strength of a property instead of its pres-
ence. The idea in learning relative attributes, assuming there
are M attributes A = {a,,}, is to learn M ranking func-
tions w,, for m = 1..M. Therefore, the predicted relative
attributes are computed by

Tm (i) = Wy T4, 3)

such that the maximum number of the following constraints
is satisfied:

V(i,7) € O s wm @ > w5, 4

V(i,j) € Sm : wmTTi ~ w5, Q)

whereby O,, = {(4,7)} is a set of ordered signal pairs with
signal ¢ having a stronger presence of attribute a,,, than sig-
nal j and S,,, = {(4, j)} being a set of unordered pairs where
signal ¢ and j have about the same presence of attribute a,,.

The work of Parikh er al. [10] provides us with the convenient
RankSVM function that returns the ranking vector w,, for a
set of input images and their relative ordering. This informa-
tion can further be used in the objective function in Eq. (2).

3. RELATIVE ATTRIBUTE GUIDED DICTIONARY
LEARNING

The RankSVM function maps the original input signal (y;) to
a point (g;) in a so-called relative attribute space. Addition-
ally, we assume that there exists a linear transformation (i.e.,
A) that maps the sparse signal (x;) to the point g; (see Fig-
ure 1 and Eq. (6)). First, we define the matrix Q € R"*M

original feature ranked sparse signal
space attribute space space
Y X

Q
D
Fig. 1. Illustration of signal transformations. The goal is to
transform x; and x; as close as possible to g; and g;.

with the elements g;,,, = 7.,,(y;) that contains the strength of
the (relative) attributes of all signals in Y. In order to find the
transformation of Y into Q we apply the RankSVM function
known from [10] onto the original input signal and obtain the
weighting matrix W = [w1T; waT;...;warT]. The objective
is to find a matrix A, which transforms the sparse represen-
tation of the signals into their corresponding relative attribute
representations ) with a minimum distance between w,,, Ty;
and a,,7x;.

argmin |Q — AX |3 = argmin |[WY — AX|2.  (6)
A A

By using Eq. (6) in Eq. (2) as a loss term we get the formula-
tion

< D,X >=argmin ||[Y — DX|3 + )| X|;

1 x

+ X||WY — AX |2 (7

From the first part of the equation we can see that Y = D X.
IfY in the loss term for the relative attributes is approximated
by D X. Then the equation becomes
< D,X >=argmin ||[Y — DX|3 + \ || X|;
D,X.A
+X||[WDX — AX||3. (8)



The third term of Eq. (8) is minimized if A = W D. This
information can be used to eliminate A from Eq. (7) to arrive
at the final objective function

< D,X >=argmin ||[Y — DX|3 + \ || X|s
D, X (9)
+X|W(Y - DX)|3.

In order to find a closed form solution for (9 and to reduce
computational complexity the term || X||; is replaced with
| X ||2. This can be justified (as in [9]) because the goal is now
to learn a discriminative dictionary and not to obtain sparse
signals . However, once the dictionary is learned, a sparse
representation can obtained by the orthogonal matching pur-
suit [16]. The final objective function is

<D, X >=argmin ||Y — DX||2 + M| X
D, X
+ X||W(Y - DX)|3. (10)

This equation is not a jointly convex optimization problem,
so X and D are optimized alternately. The update rules for
D and X are found by deriving the objective function in (11)
and setting the derivatives to zero. Precisely,

O =Y = DX + M| X3 + Ao [W(Y — DX)|[3

(1)
where
0]
PR — _ T
°D 20Y —DX)X
+2,WT(WY —WDX)XT =0
= D=Y(XTX) !XT (12)
and
o0
—_ - - _ T _
X 2DT(Y — DX) +2M X
—2LDTWT (WY —WDX) =0
=X =(D'D+MI+\D"WTWD) "
* (DY + A\ DTWTY). (13)

The complete algorithm works as follows. Initially the
RankSVM [10] function is used to learn the ranking ma-
trix W from the original input data Y and their relative
ordering (i.e., sets O,,, S;,). The initial dictionary D and the
sparse representation of the data is obtained by first building
a dictionary from randomly chosen input signals and then
applying the KSVD-algorithm [7]. Afterwards, the dictionary
and the sparse representation are optimized alternately until
convergence. We first optimize DD with respect to the initial
representation X . Then X is updated depending on the new

Dictionary D, and so forth. In order to avoid scaling issues
that may affect the convergence, the dictionary is Lo normal-
ized column-wise. The structure of the algorithm can be seen
in Algorithm 1.

Algorithm 1 Relative Attribute Guided Dictionary Learning
Require: Original signal Y, sets of ordered (O,,,) and un-
orderd images (S,,)
Ensure: Dictionary D
1: W + RankSVM(Y, O,,,, Sin)
Dyt + mdperm(Y')
: D, X « KSVD(DznZt, Y)
: for i = 0 to convergence do
D+ Y(XTX)'XT
D < normcol(D)
X + (DD +MI+XD'WTWD) (DY —
A DTWTY)
end for

A A i

*®

4. EXPERIMENTS

4.1. Datasets

In order to assess the quality of the learned dictionary ob-
tained from the proposed algorithm, we purpose a clustering
task for three public available datasets, namely Public Figure
Face (PubFig) [17], Outdoor Scene Recognition (OSR) [18]
and Shoes [19]. These sets have been chosen, since they are
the only ones known to us with annotated relative attributes.
Some sample images of each dataset are presented in Fig. 2.
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Fig. 2. Example images from the PubFig (left), OSR (middle)
and Shoes (right) datasets.

a) The PubFig dataset contains 772 images from 8 dif-
ferent identities defined by the 512 dimensional GIST
[18] features and is split into 241 training images and
531 test images.

b) The OSR set consists of 2688 images from 8 categories
described again by the 512 dimensional GIST [18] fea-
tures split into 240 training and 2488 testing images.

¢) In the Shoes dataset there are 14658 images from 10
different types. Out of this set 240 images were used for



training and 1579 for testing. The images are described
by 960 dimensional GIST [18] features.

Additionally, tests were conducted to find the optimal values
for A1 and \;. Therefore, different fixed values were cho-
sen for \; while iterating over candidates for A. The chosen
values are \; = 0.01 and Ay = 1 for the Pubfig dataset,
A1 = 0.1 and Ay = 0.01 for the OSR dataset and A\» = 0.001
and Ao = 0.1 for the Shoes dataset.

4.2. Evaluation Metrics

In order to quantify the clustering capabilities of the sparse
representation, the k-means algorithm [20] is applied and the
accuracy (AC) and the normalized Mutual Information (nMI)
metrics [21] are computed. Furthermore, the sparse represen-
tation is obtained from the learned dictionary by approximat-
ing X in the error-constrained sparse coding problem, given
by Eq. (14), with the help of the OMP-Box Matlab toolbox
[16], where the reconstruction error from the training phase is
chosen as . Those signals can then be used for the clustering.

X —argmin || X|jp st X =Y -DX|<e (14)
X

4.3. Results

As a benchmark for the results, different supervised and un-
supervised (discriminative) dictionary learning techniques
are used, namely (1) KSVD [7], (2) SRC [5] as unsuper-
vised techniques and (3) LC-KSVD [8], (4) FDDL [15],
(5) SVGDL [9] as supervised techniques. The results were
compared by their performance for full label information for
varying dictionary sizes. Fig. 3 shows the behavior of the
algorithms for an increasing the dictionary size with the com-
plete training data available. The dictionary sizes used were
[16, 40, 80, 120, 160, 240] for the PubFig and OSR dataset
and [20, 50, 100, 140] for the Shoes dataset, which corre-
sponds to [2, 5, 10, 15, 20, 30] and [2, 5, 10, 14] atoms per
class. The number of atoms per class are constrained by the
partition of the data into training and testing (for the Shoes
dataset one class only includes 14 training samples). One
should notice that the FDDL algorithm cannot use all training
data, since the dictionary size restricts the size of the training
samples. Therefore, only in the last test case the algorithm
uses the complete training information.

The results show that for the proposed algorithm the accuracy
increases with the dictionary size, up to values exceeding
the compared algorithms. However, for the OSR and Shoes
dataset and an increasing dictionary size the SVGDL and
FDDL produce comparable results. Additionally, the runtime
of the training phase was analyzed, where the proposed algo-
rithm outperformed all contestants with an average training
time of 1.75s.
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Fig. 3. Clustering results for all three datasets for increasing
dictionary sizes. The first and second column represent the
Accuracy (AC) and normalized MI (nMI), respectively. The
first, second, and third rows are the results of PubFig, OSR,
and Shoes datasets, respectively.

5. CONCLUSION

We have presented a novel discriminative dictionary learning
algorithm that utilizes relative attributes instead of binary la-
bels. The relative attributes provide a much richer semantic
information to improve the discriminative property of the dic-
tionary and eventually the sparse representation of the input
signal. Instead of using relative attributes of the images di-
rectly, we use the learned ranking functions in the learning
process. The ranking functions transform the original fea-
tures into a relative attribute space and therefore, we aim to
transform the sparse signal linearly into this attribute space.
This can be achieved by adding an additional loss term to the
objective function of a standard dictionary learning problem.
The results not only show promising results that are compa-
rable to modern DDL approaches, but also has low compu-
tational time for learning the dictionary outperforming all of
the compared approaches.
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