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ABSTRACT

Smart living and well aging represent key challenges for our soci-
ety. The precursor state of adverse outcomes that characterize ag-
ing has been recognized from scientific community with the frailty
syndrome, determined by the loss of physical and psychological ca-
pacities. In this paper we define gait and posture indexes that can be
effectively and unobtrusively measured using computer vision and
RGBD sensors, e.g. the popular MS Kinect. In this study we present
preliminary results showing evidence that the proposed approach can
pave the way to the design of an automatic and objective tool for de-
tection and early prevention of frailty.

Index Terms— Gait analysis, Computer vision, Kinect, Frailty

1. INTRODUCTION

Populations around the world are rapidly aging. Life expectation has
been increasing from 64 to 71 years between 1990 and 2015 in most
developed countries worldwide. The number of people 60 and older
reached 901 million in 2015 and will increase by 56% to around 1.4
billion people in 2030, of whom over 650 million will be 70 or older
[1]. This dramatic increase of elderly individuals represents serious
challenges in terms of demand for healthcare. In fact, aging is associ-
ated with the prevalence of chronic diseases, dependency in carrying
out the activities of daily living, disability, institutionalization, falls,
fractures, cognitive decline and onset of dementia [1].

The precursor state of adverse outcomes that characterize aging
has been recognized from scientific community with the syndrome
of frailty. There are many definitions of frailty: it is defined as the
“loss of physiologic reserve” and an increased vulnerability to ex-
ternal stresses [2, 3, 4]. The elder frail individuals account for the
highest health care costs in industrialized countries [5]. Early identi-
fication and treatment of people with a pre-frail syndrome, an earlier
stage of the physiological decline, may help delay or postpone the
onset of frailty and its negative consequences with substantial posi-
tive impact on the entire society. One of the major indicator of frailty
concerns to the impaired physical functionality, mainly assessed by
analyzing the locomotion, or gait [4].

Nowadays, frailty is mainly assessed with self-report question-
naires. In the physical domain, the most used and known test is the
Timed Up and Go test (TUG) [6], a simple test to assess the person’s
mobility. The test is used to compute the time that a person takes to
get up from a chair, walk three meters directed to a cone, turn around,
walk back to the chair and sit down. The total time spent in the com-
pletion of these steps is the final outcome of TUG. A large TUG time
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is related to a lower physical function and it is often used as an in-
dicator of physical frailty. Other assessment methods are based on
questionnaires such as the Tillburg Frailty Indicator (TFI) [7, 8]. TFI
is a simple and easy tool to assess frailty and gives a total score of
frailty ranging from 0 to 15, with a cut-off score of 5. These frailty
tests are afflicted by several drawbacks. The questionnaires require
a lot of time to be filled, some questions may be difficult to under-
stand by older individuals and the self-reported measures may be
prone to bias. Moreover, the only parameter measured by the TUG
test is the total time for performing the gait sequence, but it may be
not enough for detecting the physical frailty. New methodologies for
assessing frailty are currently being studied and computer vision can
overcome the limitations of the classical approaches just described.
On one hand, it allows to implement an automated approach for the
extraction of frailty indexes and, on the other hand, it is able to see
beyond what the human eye can, and in an objective way.

In this paper we present a prototype of a frailty detection tool,
based on the analysis of video sequences acquired through the pop-
ular RGBD sensor Microsoft Kinect during the TUG test. Our first
contribution is the definition of a set of gait and posture features that
can be computed automatically using the Kinect. Then we show that
such features are indeed correlated with the impaired physical func-
tionality. Finally, we compare the results obtained with the proposed
automatic tool with the outcomes of the manual TUG test and val-
idated self-report questionnaires on a sample of 30 subjects. This
analysis allows us to unveil the possible correlation between the pro-
posed indexes, that can be measured objectively and automatically,
and the onset of frailty in aging population.

The paper is organized as follows: in Section 2 an overview of
the state of the art about the gait analysis for health purposes is given.
In Section 3 our method for extracting gait parameters is outlined,
while in Section 4 the experimental analysis is described. Conclu-
sions are drawn in Section 5.

2. RELATED WORK

Gait analysis is the study of human locomotion; kinematic and ki-
netic data are acquired and analyzed for different purposes. The
clinical application of gait analysis allows the clinician to evaluate
physical impairments that could be related to different diseases and
disorders [9]. There are several examples of healthcare applications
for assessing the postural balance [10], rehabilitation [11], monitor-
ing of elderly people for falls detection [12] , evaluating the health
index and the frailty syndrome in older adult [5, 13, 14, 15], and so
on.

In recent years the Kinect has been used for the analysis of
human movement in many areas including health applications. In
[16, 17] it is shown that gait features extracted from Kinect can be



Fig. 1. Skeleton map and coordinate reference system of the Kinect
sensor v2.

used as a biometric signature. Gabel et al. [18] have performed
full body gait analysis for continuous gait monitoring at home. Ob-
drzalek et al. [19] have investigated the accuracy of Kinect pose
estimation for evaluating physical exercises aimed at coaching of el-
derly population. Paolini et al. [20] have combined Kinect tracking
and virtual reality environments for gait training program on tread-
mill for improving gait and mobility in patients with neurological
impairments. Yang et al. [21] have investigated the reliability of the
sensor for evaluating standing balance for postural control. There are
many examples of Kinect usage for in-home monitoring of elderly,
especially for fall risk assessment: measuring of stride-to-stride gait
variability [22]; monitoring of human centroid height relative to the
ground and body velocity [23]; testing a two-stage fall detection
system [24]; implementing the five-times-sit-to-stand (5STS) test,
a functional test to assess fall risk and discriminate between fallers
and non-fallers [25].

We can mention few examples of the use of Kinect combined
to the TUG test, but not properly related to the frailty assessment
which, to the best of our knowledge, has not yet been investigated in
the literature. Stone et al. [26] have developed an in-home Kinect
based monitoring system for estimating the TUG time and the walk-
ing speed, with the purpose to map the in-home gait data to a domain
that clinicians understand. Hassani et al. [27] have presented a 3D
computer vision system for rehabilitation of the frail elderly in home
environment. They have analyzed the TUG movements, in particu-
lar the transfer from sitting-to-standing and back-to-sitting. Vernon
et al. [28] have examined the reliability of the Kinect measures dur-
ing common clinical tests such as the TUG one, for individuals living
with stroke.

3. PROPOSED METHOD

In this study we propose to carry out gait analysis by using the Kinect
sensor, the widespread and cheap Microsoft’s RGBD camera, to ex-
tract features that are potentially correlated with the onset of the
frailty syndrome. The Kinect sensor exhibits several advantages: it
allows real-time tracking of the body movements, without markers
or any camera calibration and environment setup. In particular, we
used the skeleton tracking feature of Kinect for Windows version 2.
The new skeleton map is made up of 25 joints, five more than the
previous version, and the joints tracking is more accurate and stable
[29]. In Figure 1 a picture of the sensor together with the coordinate
reference system, the skeleton map and the joints labels is shown.
In the following let us define J i

k =
(
J i
k,x, J

i
k,y, J

i
k,z

)
as the i-th

acquisition of the coordinate of the k-th joint.

We base the assessment of physical frailty on gait analysis and
the concept of gait cycle, or stride, i.e. the sequence of movements
between two stationary positions of the same foot while walking.
During this cycle it is possible to detect two kind of parameters:
spatial-temporal measures, such as speed, swing time (i.e. the part
of the stride time in which the foot swings in air), double support
time (i.e. the time in which both feet are in contact with the ground),
variability of stride velocity, mean duration and variability of a single
walking sequence, and so on; postural balance features, related to
the skeleton posture during motion. For evaluating the frailty it is
important to consider both of these parameters [5, 13, 25].

The experimental setup is arranged in accordance to the well
known TUG test, where the subject is asked to get up from a chair,
walk along a 3 m line (forward and backward) and sits again. To
capture the movement with the sensor view frustum we placed the
Kinect at a distance of about 4 meters from the chair at a height of 2
m. During the TUG it is quite trivial to substitute the usual manual
timing of the test using the skeleton tracking data. For computing
TUG time, denoted in the following by T , one can implement an
automatic procedure able to trigger a timer when a subject gets up
from the chair and to stop it when he/she sits again. As an example
this can be achieved by monitoring the mutual position of the skele-
ton joints. Unfortunately, in the default configuration of the test, the
chair turns out to be at limits of the depth range of Kinect, where the
skeleton data are very noisy and unreliable. Given this limitation, in
this study we kept using the manual TUG timing, whereas the sensor
is used to extract features during the walking phases only.

The spatio-temporal and postural balance features are extracted
by analyzing the gait cycle in terms of skeleton joints position mea-
sured by Kinect using the RGBD video. The fist step of our method
is to select only the video frames where the subject is completely
inside the camera view frustum, in order to reduce acquisition er-
rors and to collect reliable measures. To this end, we select only the
frames where the entire skeleton is tracked.

The gait sequence acquired during the test can be divided into
two parts: the first one in which the subject walks towards and facing
the camera; the second one in which the subject walks back to the
chair. In this second part of the gait sequence we need to invert the
value of the left and right joints (i.e. those of arms and legs) because
Kinect does no provide any automatic mechanism for this kind of
situation. For detecting the turning point we check the depth value
of the center of mass (J i

0,z): it should be strictly decreasing when
the subject walks towards the camera and strictly increasing when
he/she comes back to the chair. To this end, we assume a forward
acquisition when J i

0,z − J i−∆
0,z < 0 and a backward one, otherwise.

Our experiments show that the detector is stable and reliable when
setting ∆ = 2.

The core of the proposed gait analysis tool is represented by
Algorithm 1, that we designed to update the gait features as soon as
a new stride is detected. The pseudo code refers to the case of the
left stride. In our implementation we repeat the same steps on both
right and left strides. Stride detection is based on the ankles joints
whose estimated positions turn to be stabler than the feet joints (see
our previous analysis in [16, 17]).

In particular, the beginning of a new stride is detected at time tS
as soon as d(JtS

14 , J
tS−∆
14 ) > dtol, where dtol is a proper threshold

value and d(·, ·) represents the Euclidean distance between a pair
of joint coordinates. In other words, when we observe a significant
variation in the position of the ankle we assume that the correspond-
ing foot is moving (the flag isLeftFootMoving is set to TRUE).
Based on our experimental analysis we set dtol = 5 cm. Similarly,
the stride is assumed to end at time tE if isLeftFootMoving is



Fig. 2. Postural balance during walking: right and wrong postures.

equal to TRUE and no further movement is detected applying the
same criterion. The difference (tE − tS) is an estimate of the swing
time defined above. In this work we use as a gait feature the total
swing time ζ defined as the summation of the times of all the de-
tected strides. The detected stride also serves to estimate the distance
covered by the subject while walking. Therefore, we compute the
covered distance δ, where all strides are progressively completed. To
this end the Euclidian distance between the coordinates of the center
of mass J0, at time tS and tE respectively, is used to approximate
the actual movement. Moreover, through the same stride detection
strategy we also compute the total walking time τ , defined as the
difference between the tE of the last stride and tS of the first stride,
respectively. In other words, τ represents the time elapsed from the
beginning to the end of the walking exercise. The double support
period, i.e. the time spent with both feet on the ground, can now be
approximated as the difference between the walking and swing time
η = τ − ζ. Furthermore, δ and τ are used to estimate the walking
speed β = δ/τ .

Algorithm 1 Extraction of spatio-temporal gait features
δ ← 0
ζ ← 0
for each frame i in which whole skeleton is TRACKED do

# detection of the LEFT foot
if d(Ji

14, J
i−∆
14 ) > dtol then

if !isLeftFootMoving then
isLeftFootMoving ← TRUE;
tS ← i;

end if
else

if isLeftFootMoving then
isLeftFootMoving ← FALSE;
tE ← i;

δ ← δ + d(J
tS
0 , J

tE
0 );

ζ ← ζ + (tE − tS);
end if

end if
end for
return [δ, ζ]

During the TUG test, we estimate also the postural balance of
the subject. To this end we extract a measure related to the torso
inclination during the walk; this feature can predict if the subject is
excessively tilted forward, increasing the fall risk. Looking at the
Figure 2 one can note a right posture (on the left) and the wrong
one (on the right). Let us consider two axes: c is the axis passing
through the center of mass (J0) oriented along the walking direction,
and parallel to the floor plane; s is the axis passing through the spine
joints (J0, J1, J2). If the posture is correct, c and s form an angle
φ approximately equal to 90◦; otherwise, if the torso tilts forward, φ

Table 1. Collected features during TUG test.
Label Features
T TUG test total time
τ walking time
δ covered distance
β walking speed
ζ swing time
η double support time
φ torso inclination angle

becomes smaller.
For better clarity, all the defined gait and posture features are

collected in Table 1.

4. EXPERIMENTAL RESULTS

The validation of the proposed features for frailty detection requires
an interdisciplinary approach. To this end the experimental phase
has been worked out with the collaboration of experts in the field
of active and healthy aging from the Psychology Department in our
university. In particular, we were able to test the proposed automatic
gait analysis tool in a real scenario by setting up an experimental trial
for the assessment of frailty syndrome involving 30 senior subjects
in the Turin area. Most of the participants were female (83.3%) and
the mean age was 75.6 ± 7.5 years. The participants were asked to
fill the TFI questionnaire; in particular, in this study the total score
of the TFI in addition to the 8 items of the TFI physical domain
have been considered [8]. The TFI is a recognized instrument for
frailty detection and can be used to unveil correlation between other
objective features and the onset of the syndrome. The TFI was filled
directly at elder’s home, while the TUG tests with the MS Kinect
sensor were performed at senior centers in town. Therefore, the only
difference with respect to the classic test is the presence of the sensor
for capturing the gait parameters.

4.1. Gait features analysis

The first objective of our experimental analysis is to figure out if the
movement parameters detected by Kinect allow to identify physical
dysfunctions. To this end, we make a comparison between the gait
samples of the elderly people and 6 additional young healthy sub-
jects, who underwent the same test. We start presenting an analysis
of the spatio-temporal gait parameters, to continue with an evalua-
tion of the postural balance features.

The average time spent by the 30 subjects in performing the
TUG test is T = 11.42 ± 3.22 s, while the 6 subjects takes on
average 9.66 ± 2.09 s to complete the test. The walking time turns
out to be τ = 9.31± 3.11 s for elderly people and 7.16 ± 1.66 s for
young people. Comparing these first results it is easy to see that, as
expected, the young people take less time with respect to the elderly
ones to perform the test. It can be noted that for the young ones T is
slightly greater than the walking time τ . This is a reasonable result
since younger people take a shorter time to get up from the chair and
sit down. Both elderly and young subjects covered similar distances
δ = 6.70 ± 0.57 m and 6.57 ± 1.20 m respectively; such results are
very close to double of the actual distance between the chair and the
turning point and allowed us to validate the accuracy of the proposed
stride detection algorithm.

In Figure 3-(a) we show the walking speed β measured on the 30
tested subjects. In all the following graphs the average value yielded
by the young ones is shown for comparison (solid line). The walking
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Fig. 3. Spatial-temporal and postural balance gait parameters.

speed is β = 0.75 ± 0.19 m/s for seniors and 0.92 ± 0.07 m/s for
youth. These results confirm that the proposed method is producing
meaningful measurements. In [5] similar speed values have been
already estimated: the authors reported on average 1 m/s for a non-
frail person, 0.7 m/s for a pre-frail person and 0.5 m/s for a frail
person. Our experiments confirm these previous findings: the young
people have a normal value speed of about 1 m/s, while the elderly
subjects are on average in the pre-frail range.

In Figure 3-(b) the swing time ζ is shown. The average value
is equal to 7.81 ± 2.48 s for elderly people; this is larger than the
average value of 6.21 ± 1.67 s exhibited by young people. The
same trend can be noted for the double support measurement, which
amounts to η = 1.50 ± 0.86 s for seniors and 0.94 ± 0.38 s for the
young. Age-related changes worsen the balance during walking, and
for this reason older people need more time in all the walking phases
(such as swing phase and double support phase) in order to be able
to transfer themselves without falling down.

Finally, the torso inclination (shown in Figure 3-(c)) is φ =
87.70 ± 2.40◦ in the case of elderly subjects while it is equal to
89.28 ± 0.80◦ in the case of young subjects, highlighting the dif-
ferent posture. Moreover, our results show that subjects 3, 6 and 27
have an inclination of about 85◦, that might increase the falling risk.

4.2. Gait features and frailty assessment

Now we focus on comparing the indexes yielded by 3 different ap-
proaches, namely TFI self reports, TUG time, which are standard
manual methods, and the automatic tool proposed in this work. TFI
will be used in the following as a reference for frailty assessment.
The average TFI score of the tested population is equal to 4.79±2.54
points. Specifically, 13 subjects (43.3%) were detected as robust
(score lower than 5), while 17 (56.7%) were considered frail.

In Table 2, we compare the TFI scores and the objective metrics
acquired on the 30 subjects by computing the Pearson’s correlation
coefficient r. We also computed the significance of the achieved
empirical correlation in terms of p-value (the lower the p-value the
higher the confidence on the estimated correlation).

Our results confirm that the TUG time T is significantly corre-
lated with the TFI, both total score TFIts and physical domain TFIpd
[8]: r = 0.470 (p-value = 0.012), r = 0.473 (p-value = 0.011),
respectively. More importantly we can notice that most of the pro-
posed gait features correlates with the TFI as well. In particular, the
walking time τ yields r = 0.422 (p-value = 0.025) and r = 0.421
(p-value = 0.026) with TFIts and TFIpd respectively; for the walk-
ing speed β we report r = −0.483 (p-value = 0.009) and r =
−0.496 (p-value = 0.007). It is worth pointing out that the fea-

Table 2. Pearson’s correlation coefficients r between proposed met-
rics and TFI score (∗: p-value < 0.05; ∗∗ : p-value < 0.001)

T TFIts TFIpd
T – 0.470* 0.473*

TFIts 0.470* – 0.912**
TFIpd 0.473* 0.912** –
τ 0.978** 0.422* 0.421*
β -0.834** -0.483* -0.496*
ζ 0.952** 0.390* 0.396*
η 0.785** 0.380* 0.366*
φ -0.403* 0.143 0.088

tures that are related to the swing and double support phase of the
gait are signficantly correlated with TFI as well. In particular we get
r = 0.390 (p-value = 0.040) and r = 0.396 (p-value = 0.046) for
ζ and r = 0.380 (p-value = 0.037) and r = 0.366 (p-value = 0.05)
for η. The only feature that does not correlate well with TFI is φ, that
is related to posture. Nonetheless, it can be noted that φ is correlated
with T suggesting that posture may be an aspect neglected by TFI.

In conclusion, the analysis of the correlation between the score
of manual questionnaire results and the proposed features show that
our objective and automatic indexes are quite promising indicators
for the frailty syndrome.

5. CONCLUSION

In this paper we have proposed novel gait and posture indexes that
can be measured using MS Kinect sensor with the goal to assess the
onset of the frailty syndrome in older adults. In this study we have
shown promising results giving evidence that the proposed approach
can pave the way to the design of an automatic and objective tool
for detection and early prevention of frailty. In particular we have
validated the proposed set of features comparing young healthy and
older subjects and analyzed the correlation with the results of state
of the art manual methods for frailty assessment. Future works will
be devoted to in depth analysis of the proposed automatic tool in
real screening campaigns and in the exploitation of the technique for
smart living applications leveraging on the unobtrusiveness of the
adopted sensor.
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