COMPRESSED DELAY-AND-SUM BEAMFORMING FOR ULTRAFAST ULTRASOUND
IMAGING

Adrien Besson*!, Rafael E. Carrillo**, Olivier Bernard*, Yves Wiaux' and Jean-Philippe Thiran**

*Signal Processing Laboratory (LTS5), Ecole polytechnique fédérale de Lausanne (EPFL), Switzerland
"nstitute of Sensors, Signals and Systems, Heriot-Watt University, UK
{CREATIS, CNRS UMRS5220, University of Lyon, INSA-Lyon, University of Lyon1, France
*Department of Radiology, University Hospital Center (CHUV), Switzerland

ABSTRACT

The theory of compressed sensing (CS) leverages upon structure
of signals in order to reduce the number of samples needed to re-
construct a signal, compared to the Nyquist rate. Although CS
approaches have been proposed for ultrasound (US) imaging with
promising results, practical implementations are hard to achieve due
to the impossibility to mimic random sampling on a US probe and
to the high memory requirements of the measurement model. In
this paper, we propose a CS framework for US imaging based on an
easily implementable acquisition scheme and on a delay-and-sum
measurement model.

Index Terms— Ultrasound plane wave imaging, Compressed
sensing, Beamforming.

1. INTRODUCTION

Ultrasound (US) image formation starts with a series of raw channel
signals acquired by an array of transducers (called raw data), which
are then beamformed to form the radio frequency (RF) image. In the
last years, compressed sensing (CS) framework has received much
attention in the US community due to the ability to retrieve high
quality images from sparse acquisitions. The development of sparse
optimization algorithms lead by the emergence of CS has enabled
the use of non-linear methods to solve deconvolution problems and
opened the way to alternatives to Wiener Filtering. It has enabled
to inject statistical priors on the desired Tissue Reflectivity Function
(TRF) as described in [1, 2] leading to a substantial increase of the
image resolution. It has also allowed to solve problems where the
RF image is undersampled using different strategies such as line-
wise or point-wise random patterns and the high quality RF image is
retrieved from this undersampled image as described in [3,4]. Re-
cently, Chen ef al. combined the two problems described above in
a single framework and proposed to use CS to solve a deconvolu-
tion problem in which the high resolution and high quality image is
retrieved from an undersampled and low resolution RF [5].

Closer to its original goal, CS has also been used to reconstruct
raw data, from undersampled acquisitions assuming sparsity in spe-
cific frames such as Wavelets, Fourier or Wave-atoms [6, 7]. CS-
based Fourier beamforming for plane wave (PW) imaging has been
introduced by Schiffner et al. [8,9] and Zhang et al. [10] in which
the propagation operator has been formulated in the Fourier domain.
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Another approach for CS-based Fourier beamforming has been stud-
ied by Chernyakova et al. in [11] in which finite rate of innovation
has been used to model the RF image and a Xampling scheme has
been adopted for the acquisition model. In a recent paper, a time
domain approach coupled with CS has been studied by David et
al. [12]. In this paper, the measurement model has been formulated
using Green’s function. Then, a 2D point-wise random pattern has
been applied on the raw data and a CS based algorithm has been used
to reconstruct the scatterers map.

However, there has not been lot of effort devoted to combine
delay-and-sum (DAS) beamforming with CS in an implementable
framework. Usually, the proposed acquisition schemes are not fea-
sible in hardware and the measurement matrices are enormous as
in [8]. The most advanced work on the acquisition has been done
in [12] in which a short study of the coherence of the measurement
operator has been performed. Guided by most of the work already
done in the literature, the usual tendency considers random under-
sampling (uniform random masking) of the acquired raw data as the
only possibility to get decent reconstruction results. However, such
scheme is nearly unfeasible in hardware, decreasing considerably the
interest of CS as an alternative to the classical acquisition.

In the proposed paper, we present a compressed beamforming
framework based on a DAS measurement model that has a highly
sparse measurement matrix coupled with an acquisition scheme that
collects data from a reduced subset of transducers. We show that
preliminary results of the proposed method lead to good reconstruc-
tion performances on in-vitro and in-vivo images. In section 2, we
present the inverse problem posed by DAS beamforming. Then, in
section 3, we detail the proposed CS-based reconstruction frame-
work. Numerical experiments evaluating the proposed method are
presented in section 4. Finally, we conclude in section 5 with a dis-
cussion.

2. DELAY-AND-SUM BEAMFORMING AS AN INVERSE
PROBLEM

DAS beamforming aims at inferring the position of a scatterer from
the raw data received by an US probe [13]. It is based on the cal-
culation of the appropriate delays in order to coherently sum the
backscattered echoes coming from the same scatterer, assuming a
propagation in a homogeneous medium with constant and known
speed of sound, and under the Born approximation. For a steered
PW with angle 6, it can be deduced from figure 1 that the travelling
time to the point (z, z) and back to the transducer in (z;, 0) is given
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Fig. 1: Axis convention and time delay calculation for a steered PW
with angle 6.

Each time a US wave reaches a point scatterer positioned
at (z,z) (after the travelling time Tf.q), it acts as a secondary
source and propagates a wave back to the transducers. This wave
reaches the transducer positioned at x; after the travelling time 7Tpq.
Thus, the raw data at position x; and time ¢ consists in the sum of
the waves reflected back by all the scatterers positioned in such
a way that the time ¢ equals the propagation time i.e. such that
t = 7(w,2,x;,0). Generalizing the above considerations, the raw
data r (x;,t) can be obtained by using the following relationship,
given the RF signal s (z, z), as described in [12]:

r(zi,t) = // s(x,z)dzdz (2)
(z,2)EQ

where
Q= {(x7z)|(ct—zcose—xsin9)2 —(r—x)? = 2° =0}.

Now let us discretize the integral (2). We introduce the following
gridding:

2
-1
z= {u, Vi e {1,..,,Nr}}
fs
with p; the pitch, N; the number of transducers, fs the sampling

frequency and N, the number of points in the axial direction. Then,
the discretization of (2) becomes:

Ri; = Z WiiSki

(k,1)EQy

N,
T = {(k? —Vpe — =Lpi, VE € {1, ...,Nt}}

with Q4 the discretized version of €2 and Wy, the interpolation
coefficients, set to 1 in our model which is a rough approximation
but keeps H highly sparse. Better quality could be achieved with
more elaborated interpolation kernels. Thus, the matrices S =
(Sktdreqr,..,N,pieqt,ny MR = (Big)icq,  npygeqn,neg
are related by the 4D — matrix H = (Hjj) such that:

Hopr — Wy, if (k,l) € Qq

M= 0 otherwise

H is then reduced to a 2D matrix by vectorizing both S and R using
the following change of variable:

Tp = RI_p/NTJ,p mod N, and Sq = sl_q/Nrj,q mod N,

with |.| the floor function, s € RY and r € RN with N = N, N,..
We come with the following inverse problem:

r = Hs 3)

It can be noticed that the designed H is highly sparse. Indeed, due to
the lateral gridding of the medium, a maximum number of only N;
values of s will contribute to a given 7,,. Thus, each line of H is com-
posed of only /V; non-zero values among the N which corresponds
to aratio of typically 0.01%. This makes the matrix very suitable for
iterative algorithms due to the low CPU capability needed to achieve
the matrix vector product.

3. COMPRESSED DAS BEAMFORMING

3.1. The problem

Starting from the model described in equation (3), we now consider
a compressed beamforming scheme in which we include an under-
sampling of the backcattered echoes in the beamforming process.
Formally, we introduce a subsampled measurement vector 7, € R”
with P < N and the corresponding projection operator P € RF* Y
such that, p;; € {0,1}, V(i,j) € {1,...,P} x {1,...,N} and
7. = Pr. Retrieving s given r,, poses the inverse problem defined
in the following equation:

T = PHs = Hps, @)

with H, = PH € RP*" | This problem is ill posed since the matrix
H, is fat. In order to solve it, we introduce a sparse prior and solve a
CS-based algorithm as explained in section 3.3.

3.2. The undersampling scheme

The problem of optimizing the choice of P given a measurement
model H has been widely studied in the CS literature [14-16]. Work
on CS mainly assumes that P is drawn at random which simpli-
fies its theoretical analysis, and also facilitates its implementation
[15,17-19]. The main idea is to design a measurement matrix with
the lowest mutual coherence as possible [19], the mutual coherence
being defined as:

w(A) = aia; )

= max
(4,5)€{1,...,N}2i#j

with A = [a1az...an] € RY*N a column normalized matrix.
Thus, the general problem we would like to solve when designing
our undersampling scheme is described in the following equation:

P* = argper]&l)rin(PH). 6)

One of the main objectives is the hardware feasibility of the under-
sampling scheme. In US imaging, the easiest undersampling scheme
can be achieved by shutting down several transducers at reception.
Formally, let us choose to keep J transducers among /N; according
to a given probability law and let us call £ = {l,...,l;} the in-
dices of the selected transducers. Let us consider Mg the set of all



the possible projection operators obtained by choosing J transducers
among N;. Problem (6) becomes:

P* = arg Plgl/i\}llg w(PH). @)

Problem (7) is combinatorial and thus untractable. Instead of solv-
ing it, we will consider the two following acquisition schemes that
intuitively seems quite interesting to study:

o Scheme 1 - Uniformly spaced transducers: The transducers
are uniformly selected across the aperture. This seems log-
ical in terms of coherence since the closer the transducers,
the more similar the information they are sensing, the more
coherent their contribution in the sensing matrix.

e Scheme 2 - Randomly chosen transducers: The transducers
are selected randomly in the aperture. This non-uniform spac-
ing has proven to be suited for CS in radar imaging as de-
scribed in [20].

3.3. Compressed beamforming algorithm

To solve problem (4), we exploit sparsity prior of US images in a
given model ¥ as described in our previous work [21]. The follow-
ing convex problem is posed:

min | W15, subject to |7, — Hp5|l2 < e, (8)
secN

where W denotes the adjoint operator of W. Problem (8) usually
called Basis-Pursuit Denoising problem (BPDN) is solved using
classical ¢;-algorithm. In the study, we used Douglas-Rachford
splitting approach described in [22].

3.4. The sparsifying model

In this paper, the average sparsity model proposed in [23] is used.
This model has been previously studied in the context of US images
in [21]. The dictionary in this model, composed of a concatenation
of several frames, enables to better capture image structures that are
often sparse in several frames, thus leading to improved image re-
constructions compared to single frame models.

In this study, the dictionary used is composed of the concate-
nation of Daubechies wavelet bases from Daubechies 1 (Dbl) to
Daubechies 8 (Db8) and the Dirac basis. Thus,

1

V= ﬁ[wl, vy Wy ]

where g = 8, W; denotes ¢-th Daubechies wavelet and I, denotes the
identity matrix. Db1 is the Haar basis promoting piece-wise smooth
signals while Db2 to Db8 provide smoother sparse decompositions.
The Dirac basis is used to promote the spiky component of the signal
in a similar way to [10]. The sparsity prior used to promote average
sparsity is thus:

H\UTs

q
= |[wls||, + sl
1 i1 1

4. EXPERIMENTS

In this section, the two undersampling schemes described in section
3.2 are studied firslty in terms of coherence and then in terms of
quality of the reconstruction. In order to have a baseline for compar-
isons, we also include the results for a third undersampling scheme

(Scheme 3), which consists in a 2D point-wise random subsampling
of the raw data in a similar way to [12]. In this scheme, the raw data
are undersampled randomly at each time instant.

4.1. Coherence study of the undersampling schemes

The undersampling schemes are firstly compared in terms of coher-
ence. In order to do so, the probe used in the sections 4.2 and 4.3 is
simulated. Then, the corresponding matrix H is built, for an imaging
depth of 5 cm, and its coherence is computed using equation (5). The
results are reported in table 1 for different values of J. For schemes
2 and 3, the coherence values displayed in table 1 correspond to an
average over 200 runs.

Table 1: Coherence values for the three proposed schemes.

J Schemel Scheme?2 Scheme 3
16 1 0.99 0.99
32 0.99 0.98 0.98
48 0.99 0.98 0.98

From table 1, it can be concluded that the different schemes are
equivalent in terms of coherence.

4.2. In-Vitro experiments

The proposed method is evaluated experimentally on a CIRS ultra-
sound phantom (Model 54, Computerized Imaging Reference Sys-
tems Inc., Norfolk, USA). The measurements are performed using
a Verasonics ultrasound scanner (Redmond, WA, USA) with a L12-
5-50mm Verasonics linear probe composed of 128 transducers, with
0.193 mm pitch. The central frequency is set to 5 MHz. The +12
dB CIRS phantom is insonified with one PW with normal incidence.
No apodization is used neither at transmission nor at reception.

Then, the raw data are undersampled according to the three con-
sidered undersampling schemes and the images are reconstructed
from the raw data using the compressed beamforming algorithm de-
scribed in section 3. In order to compare the results obtained with the
proposed reconstruction methods, the images are also reconstructed
using spline interpolation of the raw data followed by a classical
DAS beamforming.

The comparison is based on the classical Peak Signal-to-Noise
Ratio (PSNR), computed on the normalized Bmode image. The ref-
erence image is chosen as the Bmode image coming from a DAS
reconstruction with 21 steered PWs, in order to be close to the case
of focused waves. The contrast is also computed using the metric
defined in [24] given in equation (9).

e — o]
CR=20lo —_— 9
£10 e )
V2

where p; and ju, (07, 07) are the means (variances) of respectively
the target and the background.

The results, displayed in figure 2, show an improvement of the
image quality with the CS framework compared to spline interpo-
lation. It also enlightens the similar quality between the three pro-
posed schemes both in terms of constrast and PSNR. This means that
the proposed acquisition schemes (1 and 2) lead to a similar recon-
struction to the random scheme (3) even for high compression rates
(higher than 10 compared to the full raw data). Moreover, it appears



that the scheme 1 leads to a slight increase of the image quality com-
pared to scheme 3. Indeed, as it can be seen on figure 3, the speckle
texture is better preserved with scheme 1 (fig. 3b) than with scheme
3 (fig. 3a).

Due to the directivity of the transducers, near-field targets are
not well reconstructed by the methods as it can be seen on figure
3. Indeed, the energy reflected back to the transducers is modulated
by the obliquity factor as described in [25]. Thus, the energy com-
ing back from near-field targets is concentrated onto few coefficients
in the raw data. If these coefficients are masked by the acquisition
scheme, then a great portion of the energy is lost and the points may
not be reconstructed. This effect is the most visible on figure 3b.

One possible way to address such problem is to perform coher-
ent PW compounding as described in [13]. Indeed, a point which
is invisible for normal incidence will not necessary be invisible for
other angles. Thus, by compounding information from different an-
gles, it can be possible to retrieve a more important part of the energy.
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Fig. 2: Image quality metrics for the +12dB CIRS phantom.
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Fig. 3: Bmode image of the +12dB CIRS phantom obtained with
1 PW insonification and (a) 50 transducers and CS with scheme 3,
(b) 50 transducers and CS with scheme 1, (c) 128 transducers and
classical DAS.

4.3. In-Vivo experiments

The proposed method is also evaluated on in-vivo carotid images.
The experimental setup is the same as the one described in section
4.2. The reconstruction methods are compared based on PSNR and
Structural Similarity Index (SSIM) [26]. As reference image the
Bmode image resulting from a DAS reconstruction of a single PW
insonification is chosen. From figure 4, it can be seen that the same

conclusions than for in-vitro experiments can be made. The two pro-
posed schemes lead to a similar image quality to scheme 3 and the
proposed CS framework overcomes the spline interpolation. It can
also be noticed that from a low number of transducers (< 40), the
scheme 3 tends to keep the same image quality while the two others
start to drop. Since the proposed method inherently reduces noise,
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Fig. 4: Image quality metrics for the carotid image.

high similarity with classical DAS approach may not be necessar-
ily advantageous. Thus PSNR and SSIM metrics are used to give a
sense of performance of the proposed method compared to the two
other methods but their values have to be corroborated by a visual
inspection ideally performed by experts. As it can be seen on figure
5 where the number of transducers is lower than 40, the visual image
quality is quite similar between schemes 1 and 3. The reconstructed
images are really close to the image obtained with full data.
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Fig. 5: Bmode image of the carotid obtained with 1 PW insonifica-
tion and (a) 38 transducers and CS with scheme 3, (b) 38 transducers
and CS with scheme 1, (¢) 128 transducers and classical DAS.

5. DISCUSSION

In this paper, we propose a new DAS compressed beamforming
framework based on an easily implementable acquisition scheme,
in which only a small subset transducers are used at reception, and
a highly sparse measurement matrix. Preliminary results show that
the proposed scheme yields same image quality than a uniform ran-
dom mask scheme usually used in the literature but hardly unfeasible
on a hardware implementation. Thus, the proposed approach seems
like promising direction for a practical CS based US imaging sys-
tem. Future work will focus on improving the discretization of the
measurement model H, including PW compounding in the proposed

framework and further theoretical study of the subsampling scheme
P.
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