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ABSTRACT

We propose a method for the color stabilization of cinema
shots coming from different cameras that use unknown log-
arithmic encoding curves. The log-encoding curves are ap-
proximated by a concatenation of gamma-curves, whose val-
ues are accurately computed using image matches. The color
stabilization procedure, based on the generic color processing
pipeline of a digital camera, can be performed after the esti-
mation of the encoding curves, and it also requires the exis-
tence of image matches. Our work can be applied in different
scenarios such as multi-camera shoots, native-3D cinema, or
color grading in post-production.

Index Terms— Color stabilisation, color image analysis,
color matching, non-linearity estimation

1. INTRODUCTION

Two cameras capturing the same scene, at exactly the same
moment, will produce two pictures with colors that do not
exactly match. This is also true when using the same camera
with different user-defined settings or in automatic mode.
This difference can cause problems for a wide range of
applications where a multi-camera set-up is common (like
professional movie shooting), or mandatory (e.g. some TV
broadcasts and 3D cinema). Recently this problem, known as
color stabilization, has gained special attention for amateur,
gamma-corrected (i.e. the encoding curve follows a power
law) images [1, 2, 3, 4, 5]. In general, color stabilization
methods solve the problem by considering one of the im-
ages as the reference image and correcting the colors of the
other images (known as target images) to match the colors
presented in the reference one.

In the cinema industry it is common to encode images
using a logarithmic-based curve (known as log-encoding), in-
stead of performing gamma-correction. Logarithmic encod-
ing reduces quantization errors and avoids the loss of detail
in the dark regions of the images. This is important at post-
production stages as colorists may want to enhance those de-
tails. Different manufacturers slightly differ on the formula-
tion of the log-encoding curve, but a standard formula used
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by two of the major cinema camera manufacturers [6, 7] is
the following:

Ioutput = c · log10(a · Ilinear + b) + d, (1)

where a, b, c, d are parameters that depend on the exposure.
In this paper our goal is to color stabilize a pair of images

when at least one of them has been log-encoded and neither of
the encoding curves used for the input pair are known. To our
knowledge, this is the first work that addresses color stabiliza-
tion for cinema footage, where log-encoding is predominant.
From Eq. 1 we can see that working with such images encom-
passes a higher degree of difficulty than the case of gamma-
corrected images, as there are four parameters to be estimated.
We base our work in the following observation: log-encoding
curves can be locally approximated by gamma curves, whose
gamma-values can be accurately estimated when a set of cor-
responding achromatic matches is present in the images.

We test our method in two different scenarios. The first
scenario is related to simultaneous multi-camera situations,
where the images have some shared content. The second sce-
nario is related to post-production modifications, where the
color-grading process requires to perform color stabilization
among shots of different scenes. We will see that our tech-
nique is based on matching image values among the pair,
therefore taking the input images with a calibration checker
card present in the images improves the quality of the results
(and is required when the images do not share content because
they come from different scenes).

2. RELATED WORK

As mentioned above, we believe this is the first work to
deal with the problem of color stabilization for log-encoded
footage. There is, however, a vast literature on addressing the
same problem for gamma-corrected images both in terms of
video and still images.

The more general approach to the problem is that of global
color transfer methods [8, 9, 10]. These methods do not re-
quire any shared content among the scenes. They apply a
single color transformation learned from the statistics of the
image pair.

One of the main works on color stabilization is the one by
Hacohen et al. [2, 3]. It is based on obtaining a dense set of
correspondences between the pair of images, then the fitting



of a color model to these correspondences, and the applica-
tion of this color model to the whole image. The drawbacks
of this method stem from the difficulty of finding reliable cor-
respondences in very large smooth regions and in scenes with
strong lighting changes.

Kim et al. [11] characterize a set of gamma-corrected
cameras and get back to the RAW information, which allowed
them to obtain impressive results in color transfer applica-
tions. However, their method relies on the previous obten-
tion of RAW-JPEG pairs, and it is designed specifically for
gamma-corrected images. Chakrabarty et al. [12] improved
this model by introducing an uncertainty criteria, and there-
fore not considering all the pixels as equally important.

For the video stabilization problem, Farbman and Lichin-
ski [4] presented a method where some frames are designated
as anchors and a set of correspondences to them are found
from the remaining frames. From these correspondences, a
very simple color model (not considering cross-channel talk)
is learned. The main drawback of this method is the need
of temporal coherence among frames. Recently, Frigo et al.
[5] have presented a way of reducing this drawback by con-
sidering the motion speed as a cue for guiding the tonal sta-
bilization process. Wang et al. [13] also handled the video
stabilization problem by defining ‘color states’ that represent
the exposure and white balance of a frame.

Finally, Vazquez-Corral and Bertalmı́o in [1] obtain a sin-
gle color transform by following the color processing pipeline
of digital cameras. Our method is based upon this one, so we
give a detailed explanation of [1] in Section 2.1.

2.1. Color processing pipeline in digital cameras

In [14] it is proposed that the color processing pipeline of
digital cameras can be summarized asRG
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whereA is a 3×3 matrix comprising white balance and color
encoding, RGBin is the camera raw triplet at a given pixel
location, and a pixel-based non-linear function defined as a
power law of exponent 1

γ is applied to each pixel value.
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We know that in this case the values of RGBin should be
equal in both cameras and, therefore, we obtain that for these
corresponding pixelsRG

B


1

γ1

−H ·

RG
B


2

γ2

= 0 (4)

where H = A1A
−1
2 . Let us note that ([RGB]

T
i )
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the linearized value of image i, and therefore, Eq.(4) shows
that matrix H performs the color stabilization between the
linearized version of both images.

Consenquently, in [1] authors look for γ1,γ2 and H that
minimize Eq.(4) by minimizing the error in a least-squares
sense for the set of corresponding pixels. Then, the whole
second image can be color corrected to match the first one by
applying RG
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3. COLOR STABILIZATION

In this section we explain the main contributions of our work.
In Section 3.1 we show how a log-encoding curve can be ap-
proximated by a concatenation of gammas depending on the
grey-level value of the pixel. This observation allows us to
use the stabilization method of Section 2.1 in achromatic pix-
els to obtain the non-linearities of the image pair in Section
3.2.

3.1. Approximating a log-encoding curve by a set of
gamma curves

Let us consider a vector x of ordered values from 0 to 1. Let
us now define I1 and I2, two non-linear versions of it

I1(x) = (x)
1
γ (6)

I2(x) = c log10(a · (x) + b) + d (7)

Our goal is to find γ values (under known a,b,c, and d) so
that in a particular interval I1(x) ≈ I2(x). To prove the plau-
sibility of the approximation, we run the following experi-
ment. We divide the range [0, 1] into 40 different intervals,
and compute at each interval the value of γ making I1 best
approximate I2 (via a least-squares minimization). This has
been done for four different log-encoding curves (Arri320,
Arri640, Arri1280, ans Sony S-Log). We have then computed
the error difference between the real curve and its approxima-
tion in terms of the mean of the percentage error at each point.
Results are presented in Table 1, where we can see than in all
cases the error is below 0.5%, confirming that it is possible to
approximate log-encoding curves via gamma curves.

3.2. Characterization through achromatic matches

In the previous section we demonstrated that a log-encoding
curve can be estimated by a concatenation of gamma curves.
However, this is not the end of our problem, since given a
non-linear color pixel value (R,G,B) the estimation of the
linear values will lead to (Rγr , Gγg , Bγb), where γr, γg, γb
depend on the grey-level value of the pixel in each channel.



Algorithm 1 Stabilization from a set of achromatic matches
Given a pair of log-encoded images I1,I2
Obtain a set of achromatic matches {P,Q} such that Ip1 =
I1(P ) ≈ I2(Q) = Iq2
Randomly initializeNLI1(x) = c1 log10(a1 ·(x)+b1)+d1
while NLI1 , NLI2 do not converge do

Compute Ip1,linear = NL−1I1 (Ip1 ) = pow(10,
Ip1−d1
c1
−

b1)/a1
for each interval k of achromatic matches do

Obtain γk2 (the gamma value for I2 at interval k) by
applying Eq.(5) to the matches of Ip1,linear that belong
to the interval and their corresponding Iq2

end for
Estimate NLI2(x) = c2 log10(a2 · (x) + b2) + d2 from
the values γk2
Interchange I1 and I2

end while
Obtain I1,linear and I2,linear from NLI1 and NLI2
Obtain the matrix H between I1,linear and I2,linear as in
Eq.(4)
Stabilize the images using Eq.(8)

Therefore, in order to use the approximation suggested in Sec-
tion 2.1 we should work on the pixels where the three color
channels have similar values, i.e. the achromatic pixels. Let
us also note that at different gray-level intensities the gamma
values would also be different. Accordingly, we apply an iter-
ative process to obtain the non-linearities of the image pair by
spliting the different achromatic pixels into intervals depend-
ing on their color values, as we explain just below.

Let us suppose we have two images I1 and I2, encoded
by a logarithmic function. First, we select the corresponding
matches {P,Q} such that I1(P ) ≈ I2(Q) with the condition
that the matches are achromatic. Let us call Ip1 and Iq2 the n×3
matrices containing all these matches, where n is equal to the
number of matches and columns represent the R, G, and B
value for each pixel. We start our algorithm by initializing the
non-linearity of I1: NLI1(x) = c1 log10(a1 · (x) + b1) + d1
to some random values a1, b1, c1, d1. We apply the inverse
of this non-linearity to Ip1 obtaining the linear version of the
matches: Ip1,linear = NL−1I1 (Ip1 ) = pow(10,

Ip1−d1
c1
− b1)/a1.

Then, we split the linear matches of Ip1,linear into different
intervals based on their grey-level values. For each interval
k we apply Eq.(5) to the matches of Ip1,linear falling in the
interval and their corresponding Iq2 matches to obtain γk2 (i.e.
the gamma value for I2 in the interval k). Later on, we fit
a logarithmic curve to the set of γk2 values obtaining the non-
linearity of I2: NLI2(x) = c2 log10(a2 ·(x)+b2)+d2. Then,
we start the process again by obtaining Iq2,linear from NLI2
and looking for NLI1 . This process is repeated until both
non-linearities converge, i.e. the differences between the cur-
rent and previous NLI1 and the current and previous NLI2

Arri320 Arri640 Arri1280 S-log
L2-approx 0.46% 0.41% 0.35% 0.35%

Table 1. Average error percentage at each point between the
different curves and our approximations via local gammas

Method Median Mean RMS
Ours 0.0097 0.0167 0.0240

Random 0.0157 0.0241 0.0359

Table 2. Mean, median and RMS of the distance between the
real and the estimated curve for the set of 48 images.

are below some threshold. Then, we undo both non-linearities
and find the matrixH converting one linear image to the other
as in Eq.(5). Matrix H is computed using the full set of cor-
respondences (both chromatic and achromatic). Finally, the
whole I2 is matched to I1 by applying

I ′2 = NLI1(H ·NL−1I2 (I2)) (8)

A more detailed explanation of the algorithm can be found in
Algorithm 1. Let us note that in the case where one of the
image pair is log-encoded and the other is gamma-corrected,
the same algorithm applies, we just need to use a power-law
instead of a log-curve as the model for the NL function.

4. RESULTS

Let us start by showing that given a set of achromatic matches
between a pair of images it is possible to find the non-linearity
present in each image. To this end, we designed the following
experiment: We considered a set of 48 different RAW im-
ages obtained by a Nikon5100 camera. For each RAW we
obtained 2 different images by first multiplying the RAW im-
age by a 3 × 3 matrix A that varies in every case and then
applying two different log-encoding curves with typical pa-
rameters. We found the achromatic matches for each image
pair and applied our method to estimate the non-linear en-
coding curves for both images. The error between our esti-
mation and the real curves is computed as the difference in
area between them, and summarized (for the 48 images) in
Table 2. We compare our method versus a random paradigm
that chooses one solution among the set of 11 possible curves
used in the experiment (the curves given in [6]). We can see
that we greatly outperform the results of the random paradigm
by more than a 33% percent.

4.1. Color-stabilization results

We have collected a dataset of images in the following man-
ner. We have captured different scenes twice, one with both
a grey and a Macbeth checker and one without them. Some



Fig. 1. Results of our method for the case where there is shared content. From left to right: Source image, reference image,
result of Hacohen et al. [2], our result without considering the grey-checker, our result considering the grey checker.

of the scenes are directly the JPEGs of a NikonD3100 cam-
era, while others have been captured in RAW and then log-
encoded by first multiplying the image by a 3×3 matrixA that
varies in every case and then applying a log-encoding curve
that also varies in every case. Our idea is to take either the
JPEG or log-encoded version of one image and color-match
it to some other image with a different non-linearity. To this
end, we will use the method explained in section 3.2, that is,
we will follow the procedure outlined in Algorithm 1.

Our first experiment studies the case where there is shared
content between the two images. In this case, we have run
our method in two ways: computing the achromatic matches
from the images without checkers, or instead from the gray-
checkers only. Results for this experiment are shown in
Fig.(1), where we compare our method to the one of Hacohen
et al. [2]. In the first row of the figure the source image is a
JPEG and the reference is a log-encoded image, in the second
row the source is a log-encoded image and the reference is a
JPEG, and in the third row both are log-encoded images. We
want the reader to focus in the cropped regions, to perceive
that a greenish cast is introduced by Hacohen et al. in the top
image, that the green character in the graffiti is better solved
by our method in the middle image, and that the grayish
column in the bottom image is also better corrected by our
method. The addition of the gray-checker for obtaining the
non-linearities slightly improves our results. Note that for
display reasons we present log-encoded images in sRGB.

Our second experiment overcomes the restriction of work-
ing with images presenting some shared content. To this end,
we will consider also the information coming from the Mac-
beth color checker, whose matches will be used to obtain the
color stabilization matrix H . Results of this second experi-
ment are presented in Fig.(2). The left column of the Figure
represents the source image (a gamma-corrected image), the

Fig. 2. Results for the case of not shared content. From left
to right: Source image, reference image, our result.

second column represents the reference image, in this case is
a log-encoded one, and the third column shows our color sta-
bilization result. Let us note that we tried to run the method
of Hacohen et al. [2] in the color checkers of these images,
but the method was not able to find any reliable matches due
to the large color differences among them.

5. CONCLUSIONS

We have presented a method to color stabilize a pair of im-
ages with shared content specially focusing on log-encoded
footage. Our method builds upon the fact that log-encoding
curves can be estimated by a concatenation of gamma curves,
leading us to present an iterative method based on the set of
achromatic matches among the pair. Our work has many ap-
plications in the TV and cinema industries (e.g. multi-camera
broadcasts or 3D cinema). Future work will deal with the
computational speed of our approach, the manual selection of
image matches, and the extension of the method for images
presenting no achromatic matches.
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