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ABSTRACT

Image inpainting is the task of removing undesired objects
or flaws in images. This work advances an exemplar-based
global optimization image inpainting algorithm. For that pur-
pose, the inpainting area is iteratively refined through the min-
imization of a cost function. The minimization outcome de-
pends on the initial values of the inpainting area. We com-
pare three initialization methods with a new sparsity-driven
approach. Lastly, we propose the new wavelet contrast costs
which increase the inpainting quality. Wavelet contrasts re-
duce computational complexity in comparison to wavelet his-
tograms while preserving their ability of measuring the den-
sity of image texture.

Index Terms— Wavelet transforms, inpainting, initializa-
tion, algorithm

1. INTRODUCTION

In an image inpainting task, a part of an input image, usu-
ally called target region, is filled. The target region’s content
can either be unknown or undesired and should be replaced.
The perceptibility of the inpainting result depends largely on
the image content as well as on target region size and shape.
There are algorithms that are able to inconspicuously synthe-
size small target regions within single-texture images. When
the target region includes different textures, the inpainting
tasks becomes more complex. Tiefenbacher et al. [1] mea-
sured inpainting quality of different algorithms. Their find-
ings exhibit that the algorithms usually fail to unrecognizably
inpaint large target regions, e.g., 10% of the source image.
Consequently, there is still high potential for improving in-
painting algorithms.

They also showed that exemplar-based global optimiza-
tion algorithms, in particular [2], produce the best results on
their test bench. Therefore, the baseline for our improvements
and comparisons in inpainting quality is the algorithm of Her-
ling and Broll [2]. Our findings, however, can be applied to
any exemplar-based inpainting algorithm.

The contributions of this work are twofold: Four initial-
ization methods for the global optimization problem are eval-
uated, and a new cost metric measuring texture is introduced
and compared.

2. RELATED WORK

Our work is directly based on exemplar-based inpainting,
which aims at restoring missing texture [3]. A thorough
overview of exemplar-based inpainting can be found in [4].
In practice, a square patch ¥, C 2 around pixel p is defined
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with N C Z? being the relative coordinates of the neigh-
borhood. Then, the intensity values of all pixels in ¥, are
compared to patches of the same size in the source image.

Greedy algorithms [3, 5] process each pixel in the target
region 7 only once. In each step, they select the currently
best possible match from the source region S. The final result
for the overall target region 7, however, may not be the best
solution, since these approaches consider only neighboring
target pixels which have already been filled.

Therefore, global optimization methods [2, 6, 7], to which
our algorithm belongs, formalize the inpainting task as mathe-
matical minimization problem. This minimization problem is
solved iteratively by processing each pixel in the target region
T multiple times. The optimization parameter is the mapping
of patches in the source region S to pixels in the target region
T . It is stored in the correspondence function ¢ : 7 — S.

The cost term ¢(p, ¢) of exemplar-based algorithms is
generally a combination of weighted sums. The cost func-
tion implemented by Herling and Broll [2] and used in our
algorithm consists of terms which compare appearance and
spatial distance

c(Pyp) = - Capp.(Pyp) + (1 = a) - cspa. (P ). (2)

The appearance cost is calculated via
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with N, defining the relative coordinates to the neighborhood.
We set the neighborhood N, to 5x5 patches around the orig-
inal patch U,,. v is the offset vector and w,(v) describes the
weight map for the neighboring pixels which sums up to one.
The distance measure d,(-,-) computes the sum of squared
differences (SSD) between the pixel values u(p). The formu-
lation of the spatial cost is
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N holds the neighborhood pixels, which is the set of 3x3
pixels around the original pixel p. w; is another weight map.
The distance function d, (-, -) measures the euclidean distance
between two pixels taking the upper distance clamp 75 into
account. We set this distance clamp 7, to 200, which was
recommended by Herling and Broll [8].

Then, the solution of the inpainting is calculated itera-
tively due to the mutual dependencies between the target pix-
els. First, an initial mapping (° assigns color values to each
target pixel. This processing step influences the inpainting
result and is evaluated in Section 3.

After initialization, the algorithms try to improve the cor-
respondence function ¢* in each iteration i by solving

arg min c(pi,goi)7 Vp, € T. 5)

The intermediate correspondences of the last iteration consti-
tute the cost term values of other target pixels. Ideally, ¢*
converges to the ideal mapping ¢ after multiple iterations.

3. INPAINTING INITIALIZATION

Initialization of the target region is an important step for
exemplar-based inpainting algorithms. A poor initialization
terminates more frequently in a local minimum, which may
deviate largely from an optimal solution. Furthermore, the
initialized, low-resolution target region already contains a
structure. The patches from the source region are compared
to the content of the target region. Thus, it is likely that the
initial structure of the target region persists until the final
inpainting result, making the initialization a crucial step.

Different approaches for initialization exist but have not
been compared yet. Barnes et al. [9] chose target region
values randomly, Herling and Broll [10] interpolated border
values with a 3x3 morphological erosion filter of the target
region to the inside. Other algorithms [6, 7] incorporated
greedy inpainting using an onion-peel scheme [11, 12] for
the initialization of the target region. Some inpainting algo-
rithms [13, 14] applied the onion-peel scheme also for the
final inpainting.

We present and compare four different methods for the
initialization of inpainting: random [9], morphological ero-
sion [10] and two greedy-based ones. Since the concepts for
random and erosion initialization are simple, we only explain
the greedy initializations in more detail.

3.1. Greedy Initialization

The initialization step employs the same cost terms as in the
global optimization steps afterwards. This ensures consis-
tency within the iteration steps.

Onion-Peel Initialization The onion-peel scheme defines
the inpainting order of the target region pixels in an efficient
manner. First, a random pixel is selected at the border be-
tween known and unknown pixels. Then, the filling order of
the target region is layer-wise from the outside to the center
such as the layers of an onion.

Sparsity-Driven Initialization The sparsity-driven ap-
proach is derived from Xu and Sun [5], whose filling or-
der prioritized sparsity. The new greedy initialization order
completes edges and corners first while moving from the
boundaries inward.

Target patches are compared to their neighborhood. The
similarity between the patches ¥, and WU is defined as
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where d(-,-) is the mean-squared distance between two
patches (involving only filled pixels). Z(p) is a normalization
factor that quNf (p) WPa = 1 and o is a constant, which is
set to 5.0. The sparseness S(p) can now be calculated from
the distribution of the similarity coefficients wy, 4

N
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The neighborhood N (p) is a quadratic window centered at
the pixel p, whereas Ny (p) is defined as the neighborhood
pixels which represent completely filled patches (including
the source region). If the similarity is low, the target pixel is at
an inhomogeneous position, i.e., it is at the border of a unique
structure and should be synthesized with a higher priority.

3.2. Results of Initialization

We replaced the erosion-based initialization of the algorithm
by Herling and Broll [10] with the random, greedy onion-
peel, and greedy sparsity-driven initialization methods. Then,
inpainting is performed on the database images of [1] using
each of the four initialization methods.

Figure 1 shows a qualitative comparison for inpainting a
compact region [1]. The initialization on the coarsest layer
is depicted for each of the three methods on the top. The
random initialization consists of six pyramid layers, which
fulfills the three-pixels-to-the-border recommendation of Her-
ling and Broll [8]. The number of layers can be set to five for
the two greedy-based methods, since a higher pyramid does
not improve the result further.

Both random and onion-peel initializations are detectable,
since the street texture is inserted instead of the house or
the tree texture. The morphological erosion in Figure 1a)
achieves a quite satisfying result, since mostly tree textures
are inserted and only a very small part of the street. How-
ever, the synthesized house frontage does not fill in well. The
sparsity-driven initialization shows the best result.

4. WAVELET CONTRAST COSTS

Herling and Broll [2] correlated only the color information of
the patches. This often results in erroneously synthesized tex-
tures [7] since the texture frequency is not taken into account.

We want to consider the image structure via wavelets in
the cost metric while preserving a fast inpainting algorithm.



(a) Herling & Broll [10] init. (b) Random init.

(c) Onion-peel init.

(d) Sparsity-driven init.
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Fig. 1: Different initialization methods applied to a complex test image with a compact mask. The inpainting results with target

region indication (red) are shown at the bottom.

Heeger and Bergen [15] showed that wavelet histograms are
able to analyze texture for texture synthesis tasks. Our contri-
bution is to reformulate the wavelet histograms as a cost func-
tion by considering the findings of Wang and Simoncelli [16]
to accelerate the wavelet calculation.

4.1. Wavelet Histograms

Generally, wavelet histograms decompose the image through
a steerable pyramid decomposition [17]. Each layer of such
a pyramid contains a specific frequency band of the image
luminance. The layers are divided into multiple subbands.
Each subband captures frequencies in another direction. Af-
ter the creation of the subband images, the distributions of
the wavelet coefficients for each subband are retrieved via the
construction of histograms. Finally, the absolute value of the
Kullback-Leibler divergence (KLD) [18] quantifies the differ-
ence between the histogram distributions.

We propose two modifications to the steerable pyramid
decomposition to adapt it for inpainting: 1) we use only four
directions and the second pyramid layer. The second pyramid
layer features the highest frequency. The lower frequency
subbands contain no information about fine texture details
and are ignored. 2) Histogram computation and comparison
is performed patch-wise (33x33), which is essential for in-
tegrating the wavelet histograms in the cost function of the
exemplar-based inpainting algorithm.

We extracted three different textures from Figure 3 and
computed the wavelet coefficients of the first subband, which
measure the frequency in x-direction (sg). Figure 2 illustrates

(@)
Fig. 2: A metal (a), grass (b) and gravel (c) texture with the
result of the first wavelet subband.

the textures as well as the wavelet coefficients. A variation
between the different subband images is visible. For instance,
the subband image of the gravel texture 2c) consists of many
brighter and darker spots in the image, which implies higher
frequencies. The metal subband 2a) shows less contrast, since
the metal texture is rather smooth.

This approach, however, suffers from the processing time
of up to several minutes due to the expensive histogram cre-
ation and KLD. Wang and Simoncelli [16] took advantage of
the fact that distributions of wavelet coefficients can be ap-
proximated by a generalized Gaussian distribution defined by
only two parameters [19, 20]. Their comparison is still based
on the probability distribution with KLD.

4.2. Wavelet Contrasts

We improve this by taking only the standard deviation of
wavelet coefficients into account and call this the wavelet
contrasts. The wavelet contrasts are computed for every
subband image. The SSD between the wavelet contrasts
of different patches extends the existing cost function. No
histogram creation is required anymore.

In detail, a wavelet contrast pyramid is constructed. For
that reason, the four highest-frequency oriented subbands s,
S1, 82, and s3 are retrieved from the full-size input image
in the first part of a steerable pyramid decomposition. We
choose the subband filters of [21]. Then, the wavelet contrast
ol (p) is defined as the root mean square contrast [22] of the
neighborhood v, of each source pixel p for each subband s;:
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The subband means 5;(p) are derived with
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(a) Reference (b) Herling & Broll [2] (c) Bugeau et al. [6]

(d) Xu & Sun [5]  (e) Wavelet Histograms (f) Wavelet Contrasts

Fig. 3: Image (a) is the original image with marked target region. Images (b)-(f) show the results of different algorithms.

Each source pixel p receives a four-dimensional wavelet con-
trast vector o, consisting of the wavelet contrast values of
each subband at this location:

0 1 2

ow(p) = [0%(p), oL (p), 0% (p),0d ().  (10)

A four-channel image includes the contrast vector of each
pixel. We subsample this image to create a wavelet contrast
pyramid. During the inpainting iterations, the wavelet con-
trast vectors are inpainted concurrently to the color informa-
tion. The new wavelet cost term ¢, (p, ¢) is calculated with

cu(py o) = W1| S 0 wan (0 + k) — T ((0) + ) -
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4.3. Results of Wavelet Contrast-based Inpainting
The wavelet contrast costs are added to the inpainting algo-
rithm of Herling and Broll [2], enhancing the appearance and
spatial cost terms of Equation (2). The weights «; for the
costs are set to 0.9, 0.1 and 1.8 for the appearance, spatial
and wavelet cost terms, respectively. The inpainting initilza-
tion is done via the presented sparsity-driven approach. We
use the inpainting database of [1] for all comparisons.

Figure 3 compares our inpainting results to the algorithms
of Bugeau et al. [6] and Xu and Sun [5]. Bugeau et al. [6]
combines PDE-based [23] with exemplar-based inpainting.
The algorithm by Xu and Sun [5] applies greedy inpaint-
ing [3, 24] and creates the missing parts by combining several
patches, which is a common approach [25].

Figure 3e) shows the result with wavelet histograms in-
stead of wavelet contrasts. The wavelet histograms consist
of 50 bins and are weighted with 36. Our new results incor-
porate the sparsity-driven initialization and the normalization
step during pyramid creation. The wavelet methods in Fig-
ure 3e) and f) reconstruct the inpainting regions of the images
in the first and second row of Figure 3 correctly, whereas the
other algorithms fail except Bugeau et al. [6] in the second

row. However, the edge of the stone is sharper with our algo-
rithm.

The third row of Figure 3 shows that the gravel texture
has been inserted into the brown metal sculpture for image
3b). The wavelet contrast term prevents this cloning. Bugeau
et al. [6] leads to a quite appealing result even though the fre-
quency of the gravel texture is too high. The inpainted texture
by Xu and Sun [5] is too smooth and therefore noticeable.'

Wavelet contrast achieves similar inpainting quality as
wavelet histograms while reducing the computational time
drastically. The wavelet contrast term needs only 2-5 s ad-
ditional time for images with 640x480 pixels and a target
region covering 10% of the image. The wavelet histograms
delay the inpainting task by several minutes.

5. CONCLUSION AND OUTLOOK

We advanced a state-of-the-art exemplar-based inpainting
algorithm. First, we showed that the initialization meth-
ods derived from texture synthesis are superior to a random
initialization. Initialization schemes which consider image
structure, such as the onion-peel and sparsity-driven schemes,
guide the inpainting process and lead to an improved result.
The sparsity-driven and onion peel schemes perform equally.
We recommend to apply at least the onion-peel scheme,
since it introduces lower computational complexity than the
sparsity-driven scheme.

Second, the newly introduced wavelet contrasts can im-
prove the inpainting results. Both wavelet costs allow for con-
sidering structural density, which complements the appear-
ance and sparsity terms of the cost function. The wavelet
contrasts reduce the computational effort in comparison to
wavelet histograms while maintaining the improved visual
quality.

IThis paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. The material comprises
a video which illustrates further inpainting results and has a size of 12.3 MB.
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