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LOCAL ACTIVE CONTENT FINGERPRINTING:
OPTIMAL SOLUTION UNDER LINEAR MODULATION

Dimche Kostadinov, Slava Voloshynovskiy, Maurits Diephuis and Taras Holotyak

Computer Science Department, University of Geneva, 7 Route de Drize, Carouge GE, Switzerland

ABSTRACT

This papers presents an analysis on Active Content Finger-
print (aCFP) for local (patch based) image descriptors. A
generalization is proposed, the reduction of the aCFP with lin-
ear modulation to a constrained projection problem is shown
and the optimal solution is given. The constrained projection
problem addresses the linear modulation by a constraint on
the properties of the resulting local descriptor. A computer
simulation using local image patches, extracted from publicly
available data sets is provided, demonstrating the advantages
under several signal processing distortions.

Index Terms— active content fingerprint, modulation, lo-
cal descriptor, robustness and constrained projection

1. INTRODUCTION

Active Content Fingerprinting (aCFP) has emerged as a syn-
ergy between digital watermarking (DWM) and passive con-
tent fingerprinting (pCFP) [1]. This alternative approach cov-
ers a range of applications in the case when content modula-
tion is appropriate, prior to content distribution/reproduction.
The advantages are related to a number of applications, in-
cluding content authentication, identification and recognition.

Recently, theoretically it was demonstrated that the iden-
tification capacity of aCFP [2] under additive white Gaussian
channel distortions and `2-norm embedding distortion is con-
siderably higher to those of DWM and pCFP. Interestingly,
the optimal modulation of aCFP produces the correlated mod-
ulation to the content in contrast to the optimal modulation of
DWM where the watermark is independent to the host. Sev-
eral scalar and vector modulation schemes for the aCFP have
been proposed [3, 4] and have been tested on synthetic sig-
nals and collections of images. Despite of the attractive the-
oretical properties of aCFP, the practical implementation of
aCFP modulation with an acceptable complexity, capable to
jointly withstand signal processing distortions such as addi-
tive white Gaussian noise (AWGN), lossy JPEG compression,
histogram modifications and geometrical distortions (affine
and projective transforms) remains an open and challenging
problem.

On the other hand in recent years, local, i.e., patch-based,
compact, geometrically robust, binary descriptors such as

Fig. 1. Local aCFP framework

SIFT [5], BRIEF [6], BRISK [7], ORB[8] and the family of
LBP [9] became a popular tool in image processing, com-
puter vision and machine learning. These local descriptors
are also considered as a form of local pCFP.

However, up to our best knowledge, there is no prior work
on the modulation of local descriptors in the scope of aCFP or
DWM. Therefore, in this paper, we investigate in the direction
towards the modulation on the local image descriptor and fo-
cus on the robustness to several signal processing distortions.
Along this way, we propose aCFP with a linear modulation
subject to convex constraint on the properties of the resulting
local descriptors.

The paper is organized as follows. In Section 2 the prob-
lem is introduced, a short description of the local pCFP is
given and the local aCFP modulation is presented. In Section
3 the main result is stated. Section 4 is devoted to computer
simulation and Section 5 concludes the paper.

2. LOCAL (PATCH BASED) LINEAR MODULATION

The proposed aCFP framework consists of modulation, prior
to the content reproduction and descriptor extraction that in-
cludes feature mapping and quantization. The scheme of the
local aCFP framework is shown in Figure 1.

The core idea behind the aCFP modulation [3] is based on
the observation that the magnitude of the feature coefficients
before the quantization influences the probability of the bit
error in the descriptor bits. The descriptor bit flipping is more
likely for low magnitude coefficients. Therefore, it is natu-
ral to modify the original content by an appropriate modula-
tion and to increase these magnitudes subject to some distor-
tion constraint. Obviously, the modulation faces a trade-off



between two conflicting requirements of feature coefficient
magnitude increase for the probability of bit error reduction
and the modulation distortion. Fortunately, the low magnitude
coefficient are concentrated near zero and are easily affected
by a low distortion modulation.

Note that the local aCFP scheme is applicable also in the
context of global image description. Nevertheless, consid-
ering either global or local image description, here a novel
approach to aCFP is presented, alternatively to the scheme
considered in [4].

2.1. Local descriptor extraction (pCFP): no patch modu-
lation
Given an original image, around a local key point, local image
patch xo ∈ <N×1 is extracted. Usually the patch extraction
is performed according to the patch orientation defined for
example by a patch gradient (shown in red in Figure 1).

Given a patch xo in the most general case, the local fea-
tures are extracted using a mapping function f2 : <N×1 →
<L×1, where L is the length of the descriptor. Consider a lin-
ear function f2 (xo) = Axo, then A ∈ <L×N is a map (note
that the map is either predefined, data independent and ana-
lytic or learned, data dependent and adaptive). The mapping,
followed by a quantization Q(.) results in the local descriptor
bx = Q(Axo). The differences between the existing classes
of local descriptors are determined by the defined mapping
f2 (.) and the type of the quantization Q(.).

2.2. Local aCFP: patch modulation
The analysis here is focused on the optimal solution under
linear maps and scalar quantizers used in such descriptors as
ORB and LBP.

Linear modulation. We consider linear aCFP modula-
tion f1 : <N×1 → <N×1, f1 (xo) = Zxo,Z ∈ <N×N to
local image patches xo.

Linear feature extraction. The considered feature ex-
traction is linear f2 (xo) = Axo, defined as A = CT. The
matrix T ∈ <M×N represents a linear transform, examples
include low pass filter, DCT, FFT, WDT, random projections
and others that typically are used by most of the known local
descriptors for decorrelation and ”robustification” of the fea-
tures. The matrix C ∈ {−1, 0,+1}L×M is a m-wise (pair-
wise, triplewise, etc.) constraint matrix denoting a geometri-
cal configuration of pixel interaction contributing to a feature
extraction to be quantized.

Binary quantization. The quantization is defined as
by = Q (Axo + Axe + Axn), where xn and xe are the
modulation and the signal processing distortions respectively
and Q(a) = sign(a) = 1, if a ≥ 0 and 0, otherwise.

3. MAIN RESULT

The aCFP modulation set-up is addressed by the analysis of
the generalized problem formulation that reduces to a con-
strained projection problem.

3.1. Generalization
Proposition 1: The generalized aCFP is a solution to a prob-
lem of functions estimation:

min
f1,f2

ϕ (f1 (xo) ,xo) + λ1ψ (f2 (f1 (xo)) , τ) , (1)

where the first mapping function f1 is the aCFP modula-
tion that modifies the local data in the original domain and
ϕ(.) is a function that penalizes the modulation distortions in
the original data domain. The second mapping function f2

transforms the modified local data f1 (xo) and ψ(.) is a func-
tion that penalizes non-robust feature components. The mod-
ulation level is denoted as τ and λ1 is Lagrangian variable.

3.2. Reduction to a constrained projection problem
Consider the following constraints:

1. The first map f1 (xo) = Zxo is linear, the second
f2 (f1 (xo)) is linear and parametrized by Z and A respec-
tively.

2. The functions ψ(.), ϕ(.) and A are a priory defined.
Let a transformation matrix be denoted as T ∈ <M×N and a
constraint matrix be denoted as C ∈ {−1, 0,+1}L×M . Fur-
ther let A = CT, replace ψ by a constraint φ (Zxo,A) ≥e
0 and let ϕ(Zxo,xo) = ‖Zxo − xo‖22, where ≥e means
element-wise inequality and 0 ∈ <L×1 is a zero vector.

3. The variable reduction is defined as x = Zxo and
let φ (x,A) = |Ax| − τ1, where |Ax| is an element-wise
absolute value of the vector Ax.

Corollary 1: Given the constraints 1, 2 and 3, aCFP with lin-
ear modulation reduces to a constrained projection problem:

x̂ = argmin
x

1

2
(xo − x)

T
(xo − x)

subject to
|CTx| ≥e τ1.

(2)

The main result about the global optimal solution of (2) is
stated by the following theorem.

Theorem 1: If ∃xe ∈ <N such that Axe = te, where te =
(sign (Axo)�max{τ1−|Axo|,0}), then the solution to (2)
is x = xo+xe, where� represents Hadamard (element-wise)
product, moreover if A is invertible or pseudo invertible then
the closed form solution to (2) is x = xo + A†te, where A†

is the pseudo inverse of A.
Proof: See Appendix A.

4. COMPUTER SIMULATIONS

A computer simulation is performed to demonstrate the ad-
vantages of the local aCFP scheme over pCFP, under several
signal processing distortions, including AWGN, lossy JPEG
compression and projective geometrical transform.

The UCID [10] image database was used to extract local
image patches. The ORB detector [8] was run on all images,
and
√
N ×

√
N pixel patches, with

√
N = 31 were extracted

around each detected feature point. The features were sorted



by scale-space, 30 patches were extracted from individual im-
age. An average result for a total of 1000 image patches is
provided.

Two scenarios: pCFP and aCFP are used in the com-
muter simulation.

Two matrices A0 ∈ <L×N and A1 ∈ <L×N are used
in the pCFP scenario. One matrix A1 is used in the aCFP
scenario.

A square matrix Ti, i ∈ {0, 1} is used (M = N ). The
matrix A0 = CT0 where T0 ∈ <N×N represents low pass
filter with 11×11 window. The matrix A1 =

(
UIL×MVT

)T
where U,V are obtained by singular value decomposition
(SVD) of (CT1)T . The matrix T1 = R

[
xox

T
o

]−1 ∈ <N×N
and R ∈ <N×N is random matrix, generated from uniform
distribution with the support [0, 1]. The matrix AT

1 is the clos-
est orthogonal to (CT)

T , satisfying AT
1 A1 = I and easily

invertible.
Three measured quantities are used for evaluation: 1)

the modulation distortion, 2) the probability of bit error and
3) the modulation level.

The first is defined as DWR = 10 log10

(
2552

∆

)
, ∆ =

1
N ‖x − xo‖22. The second is defined by the probability of
correct bit pe = 1 − 1

L

∑L
i=1 I{bx (i) == by (i)} with L =

256 bits, where I is indicator function that returns 1 if the
argument is true 0 otherwise. The modulation level mL is
expressed in percentage mL = K

L 100, 1 ≤ K ≤ L and it
represents the fraction of coefficients so that are modified. At
single modulation level, the modulation threshold τ is defined
as τ = max1≤i≤K |s (i) | where so, |so (i) | ≤ |so (j) |, 1 ≤
i ≤ j ≤ L is the sorted |to| vector.

AWGN The results from a single patch was obtained as
average of 100 AWGN realizations. Four different noise lev-
els were used, defined in PSNR= 10 log10

255
σ2 are 0dB, 5dB,

10dB and 20dB. Two modulation levels (mL) were used 10
and 60. The results are shown in Table 2.

Lossy JPEG compression Three small JPEG quality fac-
tor (QF) levels 0, 5 and 10 were used. The modulation levels
(mL) that were used are 10 and 30. The results are shown in
Table 2.

Projective transform with lossy JPEG compression
A projective transformation P ∈ <3×3 where P(1, :) =
[1.0763, 0.0325, 0], P(2, :) = [0.0119, 1.09, 0] and P(3, :
) = [−24.32,−70.37, 1] was used, followed by a lossy JPEG
compression with QF=5. The modulation levels (mL) that
were used are 10 and 60. The results are shown in Table 2.

Overall the aCFP scenario brings improvement, the re-
sults produced by A1 have consistently lower pe than the re-
sults produced by A0.

The aCFP under AWGN has the greatest reduction in pe
of 0.15 achieved at AWGN level of 0dB and modulation level
mL = 60. Otherwise in the same aCFP scenario, when com-
paring the results produced by A1 to the ones produced by A1

with zero modulation, the greatest reduction is .08, achieved

pCFP
pe

A0 A1

0dB .26 .15
AWGN 5dB .17 .12

10dB .11 .09
20dB .04 .03
0 .05 0.3

QF 5 .03 .02
10 .02 .01

Projective QF=5 .08 .05

Table 1. The pe using pCFP under varying AWGN noise,
varying JPEG compression levels and projective transforma-
tion with QF level of 5.

at AWGN level of 10dB and modulation level mL = 60.
Considering the aCFP under the lossy JPEG compression,

the modulation improves the results, even at small modulation
level like mL = 30 and the greatest reduction in pe is .05,
achieved at QF=0.

The results produced by A1 are with lower pe compared
to the results produced by A0. The reduction is .05, relatively
to the result produced by the map A0. Higher aCFP modu-
lation results in lower pe, as shown in Table 3 at modulation
level 60 the pe is lower than the one at modulation level 10.

In summary, the modulation distortion and the probability
of bit error depends on the ability of the linear map to produce
robust features and the properties of the linear map, related to
the optimal linear modulation. The results produced by the
proposed linear modulation show that small pe is achievable
under different and severe signal processing distortions, how-
ever at cost of introducing modulation distortion.

5. CONCLUSION

This paper proposed a generalized aCFP problem formula-
tion, a reduction of the aCFP with linear modulation to a
constrained projection problem and a closed form solution.
The liner modulation in local context was addressed using a
constrained projection problem where a convex constraint on
the properties of the resulting local descriptor was introduced.
The computer simulation using local image patches, extracted
from publicly available data set was provided and the advan-
tages under the distortions AWGN, lossy JPEG compression
and projective geometrical transform were demonstrated.

6. APENDIX A

By definition, problem (2) implies that x = xo+xe where xe
is the error term. A multiplication form left side by the matrix
A results in Ax = Axo + Axe. This expression in term of
the error is: Axe = Ax−Axo.



aCFP
pe

mL 10 60
DWR 51 28

0dB .15 .11
AWGN 5dB .11 .05

10dB .08 .01
20dB .02 0

mL 10 30
DWR 51 42

0 .02 0
QF 5 .01 0

10 0 0

mL 10 60
DWR 51 28
Projective QF=5 .05 .03

Table 2. The DWR and pe using varying aCFP modulation
under under varying AWGN noise, varying JPEG compres-
sion levels and projective transformation with QF level of 5.

Define ts = Ax and to = Axo, the closest vector (in
Euclidean sense) ts to to is a solution of the problem:

t̂s = argmin
ts

1

2
(to − ts)

T
(to − ts)

subject to
|ts| ≥e τ1.

(3)

Theorem 2: The optimal solution to (3) is: t̂s = sign (to)�
max{|to|, τ1}.

Proof: See Appendix B.
Replace the solution of (3) in the error term, use sign mag-

nitude decomposition of Axo and reorder:

Axe = sign (Axo)�max{|Axo|, τ1} −Axo

= sign (Axo)�max{τ1− |Axo|,0} = te,
(4)

if the pseudo inverse A† of A exists than the closed form
solution to (2) is :

x = xo + A†te. (5)

7. APENDIX B

An equivalent problem representation to (3) is:

t̂s = argmin
ts

1

2
(to − ts)

T
(to − ts)

subject to
ts � I(to ≥ 0) ≥e τ1� I(to ≥ 0)

ts � I(to < 0) ≤e −τ1� I(to < 0).

(6)

Let λ1 = λ1,+ � I(to ≥ 0) and λ2 = λ2,− � I(to < 0)
then the Lagrangian for (6) is:

l (ts,λ1,λ2) =
1

2
(to − ts)

T
(to − ts)

− λT1 (−ts + τ1)− λT2 (ts + τ1) .
(7)

By setting the first order derivative of (7) with respect to
ts, the optimal t̂s can be expressed it terms of the optimal
dual variables λ̂1 and λ̂2, and this expression is:

t̂s = to + λ̂1 − λ̂2. (8)

Substituting (8) in (6), we have the dual problem:

{λ̂1, λ̂2} = argmax
λ1,λ2

− 1

2
(−λ1 + λ2)

T
(−λ1 + λ2)−

λT1 (−to + τ1)− λT2 (to + τ1)

subject to
λ1 ≥e 0
λ2 ≥e 0.

(9)

The optimal λ̂1 and λ̂2 must satisfy λ̂1 � λ̂2 = 0, im-
plies that ∀i if λ1(i) = 0 then λ2(i) = 0 or λ2(i) 6= 0 and
conversely, under the constraints λ1(i) ≥ 0 and λ2(i) ≥ 0.
Therefore (9) can be splinted and solved independently for
λ1 and λ2 under the constraint λ1 � λ2 = 0. The two sub-
problems are:

P+ : λ̂1 = argmax
λ1

− 1

2
λT1 λ1 − λT1 (−to + τ1)

subject to
λ1 ≥e 0.

(10)

P− : λ̂2 = argmax
λ2

− 1

2
λT2 λ2 − λT2 (to + τ1)

subject to
λ2 ≥e 0.

(11)

By taking the first order derivative in (10) and (11) with
respect to λ1 and λ2 respectively and equalling to zero, the
optimal solution for (9) that satisfy the constraint λ̂1 � λ̂2 =
0, λ̂2 ≥e 0 and λ̂1 ≥e 0 is:

λ̂1 = I (to ≥ 0)�max{τ1− to,0}

λ̂2 = I (to < 0)�max{τ1 + to,0},
(12)

substituting (12) back in (8), reordering and using sign
magnitude decomposition of to we have:

t̂s = to + λ̂1 − λ̂2 = sign(to) max{|to|, τ1},

that gives Theorem 2.
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