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ABSTRACT

Color constancy is the ability of the human visual system to
perceive constant colors for a surface despite changes in the
spectrum of the illumination. In computer vision, the main
approach consists in estimating the illuminant color and then
to remove its impact on the color of the objects. Many image
processing algorithms have been proposed to tackle this prob-
lem automatically. However, most of these approaches are
handcrafted and mostly rely on strong empirical assumptions,
e.g., that the average reflectance in a scene is gray. State-
of-the-art approaches can perform very well on some given
datasets but poorly adapt on some others. In this paper, we
have investigated how neural networks-based approaches can
be used to deal with the color constancy problem. We have
proposed a new network architecture based on existing suc-
cessful hand-crafted approaches and a large number of im-
provements to tackle this problem by learning a suitable deep
model. We show our results on most of the standard bench-
marks used in the color constancy domain.

Index Terms— Color constancy, Neural networks, Light
color estimation, Pooling, Data augmentation

1. INTRODUCTION

RGB outputs of the cameras are the only "color information"
we have in many computer vision tasks. However, these val-
ues can not be considered as intrinsic features of the observed
surfaces since they are the result of the interactions between
the current light in the scene, the reflection properties of
these surfaces and the camera sensors and post-processing.
The color constancy is the ability of the human visual sys-
tem to perceive constant colors for a surface despite changes
in the spectrum of the illumination. For computer vision,
many color constancy algorithms have been proposed in the
last decades as pre-processing steps [1]. Except few physics-
based algorithms [2], most of the approaches are based on em-
pirical assumptions. Starting from the well-known Grayworld
approach [3] which assumes that the average reflectance in
a scene is constant with respect to the wavelength, a large
range of other assumptions have been proposed to found the
color constancy algorithms [4]. Since these assumptions are
not based on physical rules, one can wonder if the optimal

assumption could not be discovered by learning it from real
images. Thus, the recent trend consists in learning color
constancy algorithms from labeled public datasets [5, 4, 6].
Most of these approaches are learning either a combination
of unitary approaches [4] such as gray-world or gray-edge, a
correction matrix from the gray-world estimation [6] or they
are still using handcrafted features to match patches [5].

Unlike all these approaches, the aim of this paper is to
check if an accurate color constancy algorithm can be learned
without using any handcrafted features or any unitary algo-
rithm as basis. We start from the assumptions that local filter-
ing seems to improve illumination estimation [7, 8, 9] as well
as the combination/pooling of local and global features [10].
Given these requirements, deep networks seem to be perfect
tools for this kind of application, since they have shown to
provide excellent results in many computer vision and ma-
chine learning tasks such as image classification [11]. Thus,
we propose two different neural network architectures dedi-
cated to the color constancy task and we show that state-of-
the-art results can be obtained thanks to deep networks on the
available public datasets. Finally, we propose and test differ-
ent data augmentation approaches. We will see that this step
tends to improve only the results of the architecture with con-
volutional layers. We claim tha the extensive tests and results
provided in this paper can help researchers to design new ar-
chitectures to tackle the color constancy problem.

2. RELATED WORK

There exist three main categories of algorithms devoted to
the color constancy problem. The first one contains the most
widely used algorithms in the last decade which are exploit-
ing the statistics of real color images. Among them, we can
cite the gray-world [3], the Shades-of-Gray [12], the max-
RGB [13] or the gray-edge [7] that have all been unified in
a general framework proposed by van de Weijer et al. [7].
Recently, some other statistics-based approaches have been
successfully applied to this problem [14, 10, 15]. All these
methods are based on strong empirical assumptions.

The second category regroups the physics-based algo-
rithms and mainly exploits the dichromatic reflection model
from Shafer [2, 16]. Compared to the previous algorithms,
these are well founded because they start from accurate re-



flection models but they require to detect the specularities [2]
or to segment the images [16].

The third category contains all the learning-based ap-
proaches starting from the Gamut Mapping methods [17, 8,
18, 19] or the recent patch-based approach [5] that estimate
the light color of a local region from the light colors of a
set of ground truth regions that have similar contents. This
last approach provides state-of-the-art results but its draw-
backs are twofold. First, it requires to store thousands of
patches in memory. Second, the estimation procedure for
a test image involves many successive steps (segmentation,
feature extraction, nearest neighbor search in the training set,
local and global estimations). Finlayson proposes a fastest
learning-based approach [6]. The idea is to estimate the light
color with the classical gray-world approach and then to cor-
rect this coarse estimation with a matrix that is learned on
a dataset and whose elements depend on the color and edge
moments of the image. More recently, Bianco et al. [20]
proposed to use a convolutional neural network, obtaining
state-of-the-art results. The network consists of one convolu-
tional layer with max pooling, one fully connected layer and
three output nodes. The approach first learns from local input
patches and then uses fine-tuning, minimizing the loss over
whole images and not over patches. This approach provides
very good results on one specific dataset but no results are
reported on other datasets. Finally, very recently Lou et al.
[21] proposed a deep convolutional neural network that is
pre-trained on the big ImageNet dataset with labels evaluated
from hand-crafted color constancy algorithms and fine-tuned
on each single dataset with groundtruth labels. In this article,
we propose an original deep network architecture and assess
its quality on all classical datasets. We run extensive tests to
measure the impact of parameters and of the proposed data
augmentation approaches.

3. PROPOSED NEURAL-NETWORK
ARCHITECTURES

We propose two neural network architectures dedicated to
color illuminant regression.

3.1. Mixed Max-Minkowski pooling networks

Our neural model, illustrated in Fig. 1, is inspired by the color
constancy solution of Gao et al. [10] that compared two mea-
sures computed at different scales: locally normalized surface
reflectance is compared to the global pixel average of an im-
age. Our network emulates different scales with two paral-
lel pooling operations, which we call mixed pooling. One
pooling path uses maximum pooling, the second uses average
pooling (i.e., downscaling). Using a pooling support of size
20×20, a 180×120 input image produces some 9×6 feature
maps. The pooling layer is followed by two fully-connected
layers with Tanh activation function and a three-dimensional

output layer. The fully connected layers learn to combine in-
formation collected from the regions of the image and the dif-
ferent forms of pooling.
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Fig. 1. A neural network model based on Minkowski pooling
with large support (20× 20) and a fully connected layer.

Combining two pooling operations is inspired by Gao et
al. [10] and, along the lines of [7], we generalize the second
pooling path with a Minkowski pooling using a p-norm (Lp).

3.2. Convolutional Neural Network with mixed pooling

Color illuminant estimation can be improved by adding fea-
ture extraction before pooling. In particular, the Gray edge
method [7] computes image derivatives that are integrated
over image. We decided to add a convolutional layer be-
fore the mixed-pooling layer and, since the filters can learn
to compute image derivatives, this is a generalization of edge
extraction.

We use a convolutional layer with 12 filters of size 7 × 7
before the mixed pooling (still 20x20). A 180×120 input im-
age produces 24 feature maps (12 filters × 2 poolings), each
of 8 × 5 pixels (the convolution being undefined at the bor-
ders).

4. DATA AUGMENTATION

Convolution networks are not known to be invariant to basic
image transformations like translation, rotation, deformations
etc. Data augmentation is a frequent means to cope with this
issue, basically applying the targeted transformations to the
input data instead of integrating invariance into the model.
Along the same lines, we resort to a variant of data augmen-
tation adapted to the task at hand. We explored two methods,
which we call light transfer augmentation and patch fusion.
We will see in the experimental section that these data aug-
mentation approaches only help when convolutional layers
are present in the network and we think that it is important
to share this experience with the researchers working in this
area.

4.1. Light transfer augmentation

Our goal here is to create multiple new training images from a
single image in the original training set by artificially chang-



ing the illumination in the image. To this end, we first com-
pute the unbiased image by applying a correction using the
(known) color illuminant and the von Kries diagonal trans-
form [22]. This operation is called light transfer and it is done
through a channel-wise transformation applied to the RGB in-
tensity channels:R2

G2

B2

 =

e2R/e1R 0 0
0 e2G/e1G 0
0 0 e2B/e1B

×

R1

G1

B1


where [R1, G1, B1]

T ([R2, G2, B2]
T respectively) is the

original (transformed, resp.) color vector of a pixel and
[e1R, e1G, e1B ]

T ([e2R, e2G, e2B ]T , resp.) is the original
(new, resp.) light color. The objective of data augmentation
is to increase the number of labeled training data. How-
ever, a domain shift between the original dataset and the new
augmented dataset should be avoided (assuming that the dis-
tribution of the training samples is close to the distribution
of the unknown test situation). We therefore simulate new
images by sampling new color illuminants from the original
ground truth distribution. In order to avoid changing indoor
illuminations to outdoor illuminations (or vice-versa), it is
possible to impose a limit on the difference between the orig-
inal ground truth color illuminant and the simulated one. In
practice, experiments showed that this is not necessary.

4.2. Patch fusion

The task of the network is to predict the color illuminant by
integrating estimations over the input image. However, this
integration does not necessarily need to be done over the full
input image, as different parts of the image are supposed to
be illuminated with the same color. In the lines of [20], we
therefore resort to a patch-wise process, where the network is
trained on input patches. During testing, patches are sampled
from the test image and the predictions are averaged over the
patches.

This patch-wise solution has three advantages over a
global method. Firstly, the size and complexity of the net-
work decreases, limiting overfitting. Second, patch-wise
training is an explicit form of data augmentation, increasing
the number of labeled training samples. And third, a local
estimation can tackle the eventual problem of spatially non-
uniformly distributed light, by not combining all the local
estimates into a global one (not done in this paper).

5. EXPERIMENTAL RESULTS

For the experiments, we use the 5 most used datasets for color
constancy which are variations of 2 original ones, namely the
Original SFU Gray-ball (GBO) [23] containing 11346 im-
ages and the Color-Checker Original (CCO) [19] containing
568 images. The linear version of the GBO dataset is called

hereafter the Linear SFU Gray-ball (GBL) and the liear ver-
sions of the CCO dataset are called Color-Checker by Shi
(CC-Shi) [24] and Color-Checker reprocessed (CCR) [25].
It is worth mentionning that most of the color constancy ap-
proaches (statistics-based and physics-based) are designed for
linear data, but since many papers present their results on both
linear and non-linear data, we also provide results for both.

All models have been implemented using Torch7. We
used early stopping and Resilient backpropagation (Rprop
[26]) for optimization. Rprop uses Stochastic Gradient De-
scent (SGSD) but it dynamically adapts the step of each
parameter to increase the convergence speed.

5.1. Comparison with the state of the art

Since the intensity of the illuminant cannot be recovered from
a single image, color constancy algorithms aim at estimating
its chromaticity. Therefore, in order to evaluate the quality
of an estimate, the most widely used criterion is the angle
in the color space between the estimated illuminant and the
ground truth illuminant (angular error). We report in Table
1, the mean and median angular errors, averaged by cross-
validating over N-folds.

The table is divided into three parts. The first one con-
tains the methods based on human expertise only, i.e. without
any machine learning component; the second part gives the
learning based methods and the last one presents our proposed
approach with maximum and mixed pooling neural networks
without convolutional layers. As recommended by their au-
thors, we have used a −129 offset in the CC-Shi dataset (only
for camera 5D) before testing it. Thus, the results of the 6
first unitary approaches (6 first rows) are better than the ones
usually presented in color constancy papers, but they are con-
cordant with the ones of the CC-Shi authors [4]. This table
shows that our method is better than every static (non learn-
ing) method and is comparable to the learning ones. Our
method is comparable to the Exemplar-Based [5] method and
outperforms it on the Gray-ball linear dataset.

5.2. Network architecture

In Table 2, we notice that the model without convolutional
layers turned out to outperform the convolutional one. The
convolution layers introduce new parameters and seems to
unnecessarily increase the expressive power of the network
which leads to overfitting. This is further corroborated by the
fact that data augmentation performed on the convolutional
network does improve the performance. This confirms the
findings of [20], whose deep network does not contain con-
volutions1 and validates the intuitions of [14] that local dif-
ferences do not help for color constancy. We estimate that

1To be precise, the paper [20] presents one of the layers as “convolutions
of size 1×1”, which corresponds to learning a non-linear pixelwise transfor-
mation which is shared over all pixels of the image.



Method CCO CC-
Shi CCR GBO GBL

Gray World
[3]

9.8
7.4

4.78
3.63

5.33
3.98

7.9
7.0

13.0
11.0

White Patch
[13]

8.1
6.0

5.31
3.15

6.44
4.10

6.8
5.3

12.7
10.5

Shades-of-Gray
[12]

7.0
5.3

4.40
2.72

3.98
2.35

6.1
5.3

11.6
9.7

general Gray-World
[7]

7.0
5.3

4.21
2.70 × 6.1

5.3
11.6
9.7

1st-order Gray-Edge
[7]

7.0
5.2

3.72
2.86

5.02
2.88

5.9
4.7

10.6
8.8

2nd-order Gray-Edge
[7]

7.0
5.0

3.59
2.64 × 6.1

4.9
10.7
9.0

Local Surface Refl.
[10] × 3.4

2.6 × 6.0
5.1 ×

Large Col. diff.
[14] × 3.52

2.14 × × ×

Grey patches
[15] × 4.6

3.1 × 6.1
4.6 ×

Exemplar Based
[5]

5.2
3.7

3.1
2.3 × 4.4

3.3
8.0
6.5

Corr.-moments
[6] × 2.8

2.0 × × ×**

SVRC-R
[4] × ×

1.97
× × ×

6.81*

CNN
[20] × 2.63

1.98
× × ×

Single max pooling 6.18
5.03

3.31
2.59

3.69
2.70

5.18
4.51

8.16
7.08

Mixed MaxL5 pooling 6.17
4.92

3.33
2.63

3.70
2.80

4.94
4.28

7.65
6.53

Table 1. Comparison with the state-of-the-art methods. Mean
(up) and median (down) angular errors are reported. For each
dataset, the 2 best results (for mean and for median indepen-
dently) are in bold. ’*’ means tested on a subset of (uncorre-
lated) data (1135 images among 11346). ’**’ means that the
results provided by [6] can not be fairly compared with the
ones of this table since they are evaluated only on 150 images
(among 11346) and by using a 3-fold cross validation, which
does not respect the 15-fold cross validation used by the other
approaches in order to remove the strong correlation between
the images within each video. The two last line show our
method without using any convolutional layers.

deep color constancy could highly benefit from a very large
amount of labeled training data.

The main advantage of the proposed method is its fast in-
ference at test time. As mentioned in the introduction, in or-
der to estimate the light color of a new image, the Exemplar-
Based method needs to segment the image, extract color and

texture features from all obtained segments and to run a near-
est neighbor search in the training set containing thousands of
local features. This also means that the training set is required
at test time.

5.3. Data augmentation Results

The results of the different data augmentation methods are
given in Table 2. As already reported for image classifica-
tion in [11], data augmentation increases the performance in
the presence of convolutional layers. In particular, the light
transfer augmentation gives the best results for the convolu-
tional network. For the non-convolutional architecture, in-
creasing the number of samples through patch-wise process-
ing seems to excessively decrease the information contained
in each sample and thus gives worse results.

Without conv. layers With conv. layers
Method Mean Median Mean Median

No augmentation 3,33 2,63 3,91 3,06
Light transfer augmentation 3,38 2,69 3,49 2,73

Patch fusion 3,66 3,00 3,78 2,95

Table 2. Effect of different data augmentation methods on
the Color-Checker by Shi dataset on neural architectures with
and without using convolutional layers.

6. CONCLUSION

In this paper, we have proposed two new deep architectures
that are exploiting the available expert knowledge at hand, i.e.
our networks are designed so that they can reproduce the pro-
cessing of the best non-learning methods. The extensive ex-
perimental tests actually show that these two networks outper-
form these non-learning algorithms on all the datasets and are
competitive (and sometimes better) than the other learning-
based solutions which are much more complex at inference
time. In order to be able to exploit more data during the learn-
ing step, it could be interesting to exploit several datasets at
learning time and take advantage of domain adaptation ap-
proaches in order to remove the distribution shift between the
different camera sensors.
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