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ABSTRACT 

 
Color-guided depth completion is to refine depth map through 

structure light sensing by filling missing depth structure and de-

nosing. It is based on the assumption that depth discontinuity and 

color edge at the corresponding location are consistent. Among all 

proposed methods, MRF-based method including its variants is 

one of major approaches. However, the assumption above is not 

always true, which causes texture-copy and depth discontinuity 

blurring artifacts. The state-of-the-art solutions usually are to 

modify the weighting inside smoothness term of MRF model. 

Because there is no any method explicitly considering the 

inconsistency occurring between depth discontinuity and the 

corresponding color edge, they cannot adaptively control the effect 

of guidance from color image when completing depth map. In this 

paper, we propose quantitative measurement on such inconsistency 

and explicitly embed it into weighting value of smoothness term. 

The proposed method is evaluated on NYU Kinect datasets and 

demonstrates promising results. 

 
Index Terms— Depth map completion, Markov Random 

Field (MRF), depth recovery 

 

1. INTRODUCTION 

 
Acquirement of high-quality depth data is the key problem in the 

field of 3-D computer vision, which is required in many 

applications, e.g., 3DTV, 3D object modeling. Recently, 

structured-light depth sensors, such as the first generation of 

Kinect (Kinect v1), have been widely used in research and practice. 

However, the quality of depth maps obtained by such sensors is not 

satisfactory due to big holes in the regions near edges where the 

occlusion occurs. Moreover, the noise existing in depth 

measurement makes the values different from the true values. In 

case of poor reflection or even shadow reflection of the light 

patterns, missing and erroneous depth values can also be caused by 

absorption. Objects with darker colors, specular surfaces, or fine-

grained surfaces like human hair are prime candidates for poor 

depth measurements [1]. Therefore, there are two major problems 

in depth obtained by such an imaging system, which is missing and 

distorted depth values. 

The state-of-the-art methods in depth image completion can 

be grouped into two categories: non-color-guided methods [2, 3] 
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and color-guided methods [4-13]. For non-color-guided methods, 

Kinect-Fusion [2] integrates noisy depth maps which are captured 

at various viewpoints. In contrast to the single raw Kinect depth, 

the fused depth has less holes and less noise. Multi-Kinect-Fusion 

[3] uses a multi-sensor setup of low-cost depth sensors to obtain a 

combined depth map that can be arbitrary positioned between the 

input sensors. However, these methods either have problem in 

capturing depth video or lack robustness due to the overlay of 

different infrared patters on the scene. Regarding color-guided 

depth completion methods, they always rely on companion color 

image in high quality, which uses color information for depth 

completion based on the fundamental assumption that the depth 

discontinuity and color edge at the corresponding location are 

consistent [7]. Color-guided completion methods can be further 

classified in image in-painting based methods [12-13] and super-

resolution based methods [4-11]. Wang et al. [12] proposed a 

stereoscopic in-painting algorithm which jointly completes missing 

texture and depth via two pairs of RGB and depth cameras. Holes 

occluded by foreground are completed by minimizing a predefined 

energy function. Such system requires an additional pair of RGB 

and depth cameras to fulfill the depth completion. Super-resolution 

based method consists of filter-based method and global-based 

method which uses only one pair of RGB and depth cameras to 

predict missing depth information. Compared with filter-based 

solutions [6, 9, 10], global-based methods [4, 5, 7, 8, 11] are more 

robust to noise in depth map captured by sensors. Our method 

belongs to MRF-based methods which are major methods in the 

category of global-based solutions. Diebel et al. [7] modeled depth 

enhancement as solving a multi-labeling optimization problem via 

Markov Random Fields (MRF). Park et al. [5] used a non-local 

term to regularize depth maps to fill holes and combined with a 

weighting scheme which involves edge, gradient, and segmentation 

information extracted from color images. In addition to MRF-

based methods, J. Yang et al. [8] achieved depth completion via 

the color-guided auto-regression model.  

Although color-guided methods work well for depth 

completion, color guidance image might lead to texture-copy 

artifact as well as depth discontinuity blurring. The main problem 

is that the fundamental assumption of color-guided depth 

completion methods is not always true. That is, depth discontinuity 

regions on depth map do not necessarily correspond to the regions 

of color edge in the registered color image. 

In fact, these artifacts have been noticed for a long time, and 

almost all state-of-the-art methods mentioned above adopt various 

ways to eliminate the texture-copy and depth discontinuity blurring 

artifacts. But they do not explicitly evaluate the edge inconsistency 

between color image and depth map. Therefore, they cannot 



adaptively control the effect of guidance from color image when 

completing depth map. 

In this paper, the main contributions are in two aspects. 1. Our 

method explicitly considers the inconsistency occurring between 

depth discontinuities and the corresponding color edges, and 

measuring inconsistency quantitatively; 2. Our method explicitly 

embeds inconsistency measurement above into weighting value of 

smoothness term in MRF energy function. Therefore, the proposed 

method is able to not only suppress texture-copy artifacts but also 

preserve edges better than other state-of-the-art methods. 

The rest of this paper is organized as follows. Section 2 

presents the proposed algorithm via Markov Random Fields with 

inconsistency measurement. In section 3, the experimental results 

are presented. Section 4 concludes this paper. 

 

2. PROPOSED METHOD 

 
A Markov random field, also known as a Markov network or an 

undirected graphical model has been widely utilized for many 

image processing applications and tasks. MRF formulates depth 

map completion as solving an optimization problem. The input 

includes high quality color image and low quality depth map. 

According to the Hammersely-Clifford theorem [14], solving MRF 

is equivalent to optimizing the Gibbs energy function, whose 

general formulation is defined as follows: 
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where D indicates the value set of the reconstructed depth map, 

pd indicates the reconstructed value of pixel p , 
pD is the observed 

depth value of pixel p . O is the pixel set consisting of pixels which 

have observed depth values.
dataE is called the data term which 

maintains the consistency between the reconstructed depth value 

and the initial observed depth value. 
smoothE is called the 

smoothness term which penalizes the differences between the 

reconstructed depth value and the depth values in the neighboring 

region. The parameter  is used to balance the data term and 

smoothness term.
pN is the set of 8-connected neighboring pixels 

for the pixel p . 

According to the MRF based depth completion framework 

shown in Eq.(1), a common method models  ,data p pE d D and 

 ,smooth p qE d d as Eq.(2) and Eq.(3) based on the assumption of 

Gaussian White Noise. pq links color image to depth map which 

provides the guidance from color image for depth completion 

based on the assumed consistency between color edge and depth 

discontinuity (i.e. depth edge) [7]. As mentioned above, this 

assumption is not always true. It is the root problem of texture-

copy and depth discontinuity blurring happening during depth 

completion because of the wrong guidance from color image. To 

overcome the texture-copy and depth discontinuity blurring 

artifacts, this paper proposed a weight smooth pq  to replace pq in 

Eq.(3), for the first time, by introducing quantitative inconsistency 

measurement between color edges and depth discontinuities. 

Section 2.1 proposes the quantitative measurement on the 

inconsistency between color edge in color image and depth 

discontinuity in the corresponding regions on depth map. Section 

2.2 and 2.3 explicitly embed such measurement into 
smooth pq 

in 

MRF framework to adaptively adjust MRF optimization. 

 

2.1. Measurement on the inconsistency between color 

edge and depth discontinuity in the corresponding 

regions 

 
Motivated by [15], the inconsistency measurement between color 

edge map and depth edge map is formulated as a bi-directional 

edge map quality assessment. Like [15], common edge map quality 

measurement is based on each individual edge pixel position shift 

against the ground truth edge pixel position. This paper is dealing 

with different case. Given a pair of depth map and RGB image, 

there is no additional information of ground truth position for each 

pixel. Thus, it is impossible to calculate one-to-one edge pixel 

position matching/checking. The consistency measurement in this 

paper is based on the edge map structure similarity. 

Canny operator [16] is applied in color image and coarsely 

interpolated depth map to generate relevant edge maps. Due to low 

quality interpolated depth map by scattered interpolation method, 

the positions of corresponding edge pixels on color edge map and 

interpolated depth edge map are not consistent strictly. In this 

paper, inconsistency measurement is casted as a MRF optimization 

problem. For each edge position on reference edge map, it will 

search the best consistency in a neighboring region around the 

corresponding position on the target edge map. This implies that if 

the edge maps between color image and depth map are consistent, 

the position shift of each edge pixel should be small and it should 

only moves to a closely nearby region. Moreover, the shift 

including strength and orientation in a nearby region should 

happen consistently. These two constrains are solved in a MRF 

framework through its data term and smoothness term respectively. 

          


   
 

argmin , ,
p

p p k
L l p ref p ref k N p

L C p p l V l l
   

                (4) 

where  , pC p p l  is the data term of the MRF model. p  

represents the position of edge pixel in the reference edge map. 
pl  

stands for the displacement so
pp l represents a position of edge 

pixel q which is in a neighboring region corresponding to the 

coordinate of p in target edge map. In our work, the size of 

neighboring region is 7 7 . Data term  ,C p q  matches the 

reference edge pixel p  against target edge pixel q . Given p , if 

certain target pixel q in neighboring region of p is not an edge 

pixel in target edge map, it is regarded as definite inconsistency. In 

that case,  ,C p q  is assigned to the maximum inconsistency value 

(i.e. 1 in our work). Otherwise, this inconsistency is measured on 

two blocks where edge pixel p  and edge pixel q are the center 

positions of these blocks respectively. In this paper, the size of 

block is 3  3.  1 2, ,...,p p p pME e e e and  1 2, ,...,q q q qNE e e e are defined 

to represent the sets of edge pixels in these two blocks respectively 

(excluding p and q ). M and N  are the number of edge pixels 

inside these two sets. Thus, the inconsistency measurement 

between p and q is regarded as a matching problem between two 

data sets pE and qE . This matching problem is sorted out via 

Bipartite graph matching [17] which is more robust than MAD 

(mean of absolute difference) and Euclidean distance. The 



Bipartite graph  , ,p qG E E W  is defined, where
pE and

qE  are 

vertices in Bipartite graph and W represents the link between 

vertices whose weight is defined as  ,i j which is a monotonic 

function that returns a positive penalty for local structural 

matching. 

                                       , x x y yi j f i j i j                             (5) 

where      0 0, 1 1, 2 1.6f f f   and   2f x  when 2x  . ,i j  

are vertices in Bipartite graph, ,x yi i  are the coordinate of i . 

Bipartite matching [17] is employed to enforce one-to-one 

matching between edge pixel data sets above. That is, it assures 

any edge pixel in /p qE E  matches only one edge pixel in /q pE E , 

leaving M N unmatched pixels. Unmatched pixels represent the 

potential structure differences between edge pixel sets /p qE E . 
Bipartite matching is used to define the inconsistency measurement 

term  ,C p q in Eq.(4) as, 
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      1 1 2 2, , , ,... ,pq r rE p q p q p q  is edge pixel pair sets selected by 

Bipartite graph matching [17].  ,s sp q is the weight of the link 

between edge pixel
sp and edge pixel

sq and 1,2,3...s r . 

Therefore,  
 ,

,
s s pq

s s

p q E

p q


 is the matching cost of Bipartite 

matching [17] mentioned above. Through normalization, the range 

of data term  ,C p q  is ensured in [0, 1]. 

 ,p kV l l is the smoothness term in Eq.(4), which gives a 

penalty when adjacent edge pixels have different displacements as, 
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 ,p kV l l takes the connectivity of adjacent edge pixels into account, 

which means that connectivity of adjacent edge pixels is 

encouraged to maintain in the solution of Eq.(4). 

In Eq.(4),  is a balance factor between data term and 

smoothness term. It is set to 0.1 in this paper.  N p is the set of 8-

connected neighboring pixels of p . Graph cut [18] is adopted to 

solve Eq.(4) MRF problem. The output of data term C computed 

by optimized displacements L represents the inconsistency 

between reference edge map and target edge map. 

The inconsistency is measured based on reference edge map 

against target edge map. Thus, the measurement results will be 

different when swapping these two edge maps. In this work, the 

two edge maps are color edge map and depth discontinuity (edge) 

map. When color edge map is regarded as the reference edge map 

for inconsistency measurement, it can be observed that inconsistent 

positions detected reflect the texture copy happening areas. On the 

other hand, when depth discontinuity (edge) map is regarded as the 

reference edge map, it is observed that inconsistent positions 

reflect the depth discontinuity blurring happening areas. 

 

2.2. Alignment of inconsistency maps 

 
After bi-direction evaluation, there are two inconsistency maps 

colorC , depthC as well as two displacement maps colorL , depthL  for an 

image pair. They represent the inconsistency measurement and 

displacement when color edge map or depth edge map are the 

reference edge map respectively. Before embedding the 

inconsistency measurement values into MRF based depth 

completion framework, these two inconsistency maps must be 

consolidated to each other. 

As mentioned before, coarsely interpolated depth map may 

shift the position of edge pixels a bit from their true locations. On 

the other hand, the position of edge pixel on color edge map is 

more precise because of high quality of color image. Through the 

solution of MRF problem, Eq(4), mentioned above with depth 

edge map as the reference edge map, the displacement between 

each depth edge pixel p and its color edge pixel q is  depthL p . 
Consequently, the true location of depth edge pixel p supposes to 

be more close to  depthp L p when   1depthC p  which excludes the 

case of definite inconsistency that represents no corresponding 

pixel on color edge map for p . Therefore, the 
depthC is adjusted as, 
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            (8) 

Eq.(8) defines that if there are more than one pixel p mapping 

to the same pixel ,p  the best mapping with the lowest cost is 

adopted. Otherwise, the proposed method maintains the positions 

and values of the rest mappings unchanged from
depthC to 

depthC . 

Once two inconsistency maps 
depthC and

colorC are aligned, a 

confidence map
p is defined as below, taking two directions of 

evaluation into account. It describes the final inconsistency status 

between color edge map and depth discontinuity (edge) map, 

which is embedded into MRF based depth completion framework 

i.e. Eq.(1) (see Section 2.3). 

                            max ,p depth colorC p C p                             (9) 

 

2.3. Improved MRF by considering inconsistency 

measurement 

 
To simplify the explanation in the follows, Eq.(3) is updated below, 

                                    
2

,smooth p q smooth pq p qE d d d d                    (10) 

where
smooth pq 

is to replace
pq  in Eq.(3). Generally speaking, 

guidance information for depth completion task can be derived 

from two sources. One is from registered color image, and the 

other is from original depth map. Based on the confidence 

map p computed in Eq.(9), this paper combines it to generate a 

new guidance image to compute the weighting value 
smooth pq  . smooth pq  is constructed as below. 
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where pq

color and pq

depth represent color difference and depth 

difference between position p and its neighboring pixel q  in 

guided color image and coarsely interpolated depth map 

respectively.  controls decay rate of exponential function in 

Eq.(11). In our work, applying "max" operation is better than mean 

operation when integrating p and q together which is expressed as 

 max ,pq p q   . It is also observed that when the corresponding 

color edge map is more consistent with depth edge map, 



                                                                                                 

 

       

 

       

 
(a)                         (b)                           (c)                           (d)                           (e)                            (f)                           (g) 

Fig. 1 Depth map completion results.  (a) RGB Images, (b) Registered raw depth maps from Kinect v1, Depth map completion using (c) 

AR [8], (d) MLS [9], (e) JBU [10], (f) Colorization [11] and (g) Our results. Note the high-lighted regions. 

 
pq

color plays more important role in computing the weighting 

value
smooth pq 

.  

The scenario discussed above is on the regions around edge 

pixels. When the depth incompleteness happens on the smooth 

regions (windows centered at ,p q ) where there are no edge pixels 

on either color image or depth map, Eq.(11) cannot satisfy such 

case because the previous guidance information is based on the 

presence of edge pixels and their relation between color image and 

depth map. In this paper, it is updated as Eq.(12) for this special 

case, where the guidance information for depth completion is from 

depth map only to thoroughly overcome texture copy artifact. In 

our work, we also see that a larger  is needed to suppress noise in 

these smooth regions. 
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l er
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Based on the analysis above, the proposed method can 

preserve depth edges and prevent texture-copy artifacts efficiently 

by adaptively controlling the guidance from color image for depth 

completion. 

 

3. EXPERIMENTAL RESULTS 

 
The proposed method is evaluated on NYU Kinect v1 datasets [19]. 

The comparison performance against the state-of-the-art methods 

is demonstrated. 

 

3.1. Parameters setting 

 
All the edge maps are computed through Canny operator. The dual 

thresholds setting are [0.04, 0.12] and [0.03 0.07] for color and 

depth respectively.  is set to 5 for the whole datasets.  and 

larger is fixed to 2 and 4 respectively. 

 

3.2. Experimental results on NYU Kinect datasets 
 

The proposed method is compared with state-of-the-art methods: 

AR [8], MLS [9], JBU [10] and Colorization [11]. Fig.1 shows the 

depth completion results of three datasets which have rich texture 

in color, challenging the basic color-guided depth completion 

assumption.  

For the details, the second and the forth rows in fig.1 illustrate 

the performance on preserving edges. Moreover, the second and 

the sixth rows show the performance on suppressing texture-copy 

artifacts. From these enlarge regions, it is shown that the existing 

methods [8, 9, 10, 11] have texture-copy artifacts on the different 

degrees. In term of preserving edges, AR [8] performs best in these 

existing methods. Through comparison, it is shown that the 

proposed method demonstrates the best depth completion 

performances which have the best results in not only edge 

preserving but also texture-copy artifacts suppressing. 

 

4. CONCLUSION 

 
This paper proposes a color-guided depth completion method in 

MRF framework. The key contribution is to explicitly measure the 

inconsistency between color edge map and the depth discontinuity 

(edge) map and embed it into MRF framework. It relaxes the 

assumption in color-guided depth completion methods. And it 

eliminates texture-copy and depth discontinuities blurring artifacts. 

Experimental results on the NYU Kinect datasets prove the 

improved performance of the proposed method. 
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