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Abstract

Level set methods are widely used for image segmentation because of their capability to handle 

topological changes. In this paper, we propose a novel parametric level set method called 

Disjunctive Normal Level Set (DNLS), and apply it to both two phase (single object) and 

multiphase (multi-object) image segmentations. The DNLS is formed by union of polytopes which 

themselves are formed by intersections of half-spaces. The proposed level set framework has the 

following major advantages compared to other level set methods available in the literature. First, 

segmentation using DNLS converges much faster. Second, the DNLS level set function remains 

regular throughout its evolution. Third, the proposed multiphase version of the DNLS is less 

sensitive to initialization, and its computational cost and memory requirement remains almost 

constant as the number of objects to be simultaneously segmented grows. The experimental results 

show the potential of the proposed method.
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1. INTRODUCTION

Level set method, first introduced by Osher and Sethian [1], is a popular technique for 

following the evolution of interfaces. The technique has a wide range of applications in 

image processing, computer graphics, computational geometry, optimization, and 

computational fluid dynamics.

Related Work

The ability of the level set method to handle topological changes has made the algorithm 

suitable for image segmentation and tracking applications. However, the traditional level set 

formulation has several major drawbacks. Next, we briefly discuss some of these limitations 

and the related work in the literature to address them.

The original level set method is computationally expensive and the level set function can 

also develop irregularities (such as very sharp or flat shape) during evolution [2]. The large 

computational cost is mainly because the level set method increases the dimension of the 

problem by one, and the gradient descent methods used in level set evolution require large 
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number of iterations, since the time step is limited by the standard Courant-Friedrichs-Lewy 

(CFL) condition [3]. Modifications such as fast marching, sparse, and narrow band schemes 

were proposed in order to improve the computational time of level set evolution; however, 

level set method is still a relatively slow approach [4]. In order to overcome the irregularities 

of the signed distance function, some of the techniques employed are periodic re-initializing 

of the level set function, and adding a regularizing term that forces the level set function to 

be close to a signed distance function [5, 6]. However, the re-initialization method has the 

undesirable effects of moving the level set from its original location, expensive 

computational cost, blocking the emerging of new contours; whereas, the regularizing terms 

still cannot guarantee the smoothness of the signed distance functions [5, 6].

In order to limit the computational cost and also minimize irregularities of the level set 

function, recently parametric level set methods are proposed in the literature [7, 8, 9, 3, 10, 

11]. Parametric methods have faster computational speed since they reduce the 

dimensionality of the problem. Although, the parametric methods in the literature simplify 

the challenges involved in keeping the regularities of the level set function, they still require 

re-normalization of the level-set function during the evolution process [9].

Furthermore, the techniques available in the literature on multiphase level set formulations 

for simultaneous segmentation of multiple objects have the drawback of large increase in 

computational time and memory requirement as the number of objects to be segmented 

increases. Most level set based multi-object segmentation approaches available in the 

literature use R level set functions to segment R objects [12, 13]. In [14] Vese and Chan 

proposed a multiphase level set framework that requires log R level set functions to segment 

R objects. Although [14] is relatively computationally attractive, in applications that require 

tracking of the individual objects and use of their shape priors, it is more convenient to have 

a unique level set for each object. In addition, most multiphase level set methods in the 

literature are very sensitive to the initialization. The level set method we propose in this 

paper has the highly desirable properties that it is less sensitive to initialization, and its 

computational cost and memory requirement remains almost constant as the number of 

objects to be segmented grows, while also having the capability to represent each object with 

unique level set.

Contributions

In this paper, we propose a novel parametric level set method called Disjunctive Normal 

Level Set (DNLS), and apply it to both two phase and multiphase image segmentations. The 

DNLS is based on an implicit and parametric shape model called Disjunctive Normal Shape 

Models (DNSM). The DNSM is recently used for a single object segmentation: to model the 

shape and appearance priors of objects in [15, 16], and as an interactive segmentation 

framework in [17]. The DNLS we propose keeps the level set function regular all the time, 

and it has much faster computational speed since its time step is not limited by the standard 

CFL. This paper has three major contributions. First, we present the DNLS level set 

representation (in Section 2.1). Second, we give a two-phase region-based segmentation 

using the proposed DNLS method (in Section 2.2). Third, we present a novel DNLS 
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multiphase segmentation (in Section 2.3) which is robust to initialization and efficient in 

terns of both the computational time and memory requirement.

2. METHOD

In this section, first we present the disjunctive normal form level set representation, and then 

we show how the proposed level set can be used for region-based image segmentation in 

both two-phase and multiphase cases.

2.1. Disjunctive Normal Level Set Representation

We begin the description of the disjunctive normal level set shape representation with an 

example for clarity. Figure 1(a) shows how the conjunctions of eight half-spaces forms a 

convex polytope. Our DNLS uses the disjunction of convex polytopes to represent complex 

shapes, as shown in Fig. 1(b).

Consider the characteristic function f : RD → B where B = {0, 1}. Let Ω+ = {x ∈ RD : f (x) 

= 1}. Let us approximate Ω+ as the union of N convex polytopes , where the 

i’th polytope is defined as the intersection of  of M half-spaces. Hij is defined 

in terms of its indicator function

(1)

where wijk and bij are the weights and the bias term, and D is the dimension. Since any 

Boolean function can be written in disjunctive normal form [18], we can construct 

 such that Ω̃+ = {x ∈ Rn : f̃ (x) = 1}. Since Ω̃+ is an approximation 

to Ω+, it follows that f̃ is an approximation to f. Our next step is to provide a differentiable 

approximation to f̃, which is important because it allows us use variational approaches; in 

other words, it allows us to formulate various energy functions and to minimize them with 

respect to the parameters of the model. First, the conjunction of binary variables 

can be replaced by the product . Then, using De Morgan’s laws [18] we replace 

the disjunction of the binary variables  with , which in turn can be 

replaced by the expression . Finally, we approximate hij (x) with 

logistic sigmoid functions  to get the differentiable 

approximation of the characteristic function f̂ (x)

Mesadi et al. Page 3

Proc Int Conf Image Proc. Author manuscript; available in PMC 2017 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(2)

where ℵ(x) is the list of polytopes that are in the neighborhood of the location x.

The DNLS formulation of equation (2) is similar to the DNSM shape model presented in 

[15, 17], except for two modifications. First, instead of using the application domain 

knowledge to decide on the small number of polytopes needed [15, 17], we use a large 

number of polytopes, N, in the DNLS formulation, and initialize the level set with regularly 

distributed polytopes (in the region of interest), as can be seen in Fig. 2. The use of dense 

initialization helps the DNLS to capture complex shapes, detect small parts and holes, and 

provides a fast convergence speed. Second, for computational efficiency, we only use the 

neighboring polytopes, ℵ(x), for each location, x, in the image. For instance, in Fig. 2 only 

the polytopes in the red box are used when evaluating the characteristic function, f, at 

location x. During the level set evaluation, the individual polytopes can grow, shrink, 

deform, disappear, and reappear. The only adaptive parameters in equation (2) are the 

weights and biases of the first layer of logistic sigmoid functions σij (x) which define the 

orientations and positions of the linear discriminants that form the shape boundary. In 

equation (2) the level set f (x) = 0.5 is taken to represent the interface between the 

foreground f (x) > 0.5 and background f (x) < 0.5 regions.

2.2. Two-phase (One Object) Segmentation

Mumford and Shah in [19] presented the first variational approach to region-based 

segmentation where the image is approximated by piecewise smooth regions. In [20] Chan 

and Vese (CV) proposed one of the most popular region-based level set segmentation by 

approximating the image into piecewise constant regions and evolved the level set in order to 

minimize the variance of each partition. The CV equivalent two-phase region-based 

variational energy using the proposed DNLS level set can be given as

(3)

where c1 and c2 are the average intensities in the foreground and background regions. I (x) is 

the intensity of the pixel at location x.

The energy minimization implies computing the derivatives of equation (3) with respect to 

each discriminant parameters, wijk. During segmentation, the update to the discriminant 

weights, wijk, is obtained by minimizing the energy using gradient descent as
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(4)

where  Therefore, during the level set 

evolution the discriminant parameters are updated on each iteration as 

, where γ is the step-size. Since the evolution of the proposed 

parametric level set is not constrained by the standard CFL condition, we can easily choose 

large γ at the beginning of the evolution and gradually decrease as the segmentation 

progresses. It is also important to notice that the level set function, f, remains regular during 

the evolution.

2.3. Multiphase (Multi-Object) Segmentation

In this section, we extend the DNLS framework to segmentation of images with more than 

two regions. In order to concurrently segment R objects (regions), techniques in the 

literature usually use R or log R level sets. Since the DNLS level set presented in Section 

(2.1) is made up of union of many polytopes, the single level set function given in equation 

(2) can be used to segment R regions. Each of the polytopes can individually be regraded as 

a level set function, and hence, they can be assigned to different regions (objects). Therefore, 

the movement of the surfaces between the different objects takes place in two ways: by the 

deformations of the polytopes, and by change in the labels of the polytopes. The DNLS 

multiphase energy can then be given as E = EL + ED; where EL is the energy for changing 

the labels of the polytopes, and ED is the energy for deforming the polytopes.

For the label assigning energy term EL we use a simple K-means clustering; however, any 

advanced clustering method can be employed. By first computing the mean intensities for 

each polytope pi, we can cluster them into R region labels. That is, given a set of N 

polytopes with their average intensities (p1, p2, …, pN), K-means clustering aims to partition 

the N polytopes into R region label sets L = {L1, L2, …, LR} so as to minimize the within-

cluster sum of squares as , where cr is the mean of the 

intensity of all the polytopes assigned to region r (the mean intensity of region r). Fig. 3 (b) 

and (c) show the effect of applying EL, which changes the label assignments of the 

polytopes (the colors show the label assignment).

The deformation energy term, ED, controls the deformation of the polytopes so as to achieve 

proper segmentation while at the same time avoiding the overlap of the different segments or 

creation of gaps, and is given by
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(5)

where we represent each region, r, by a unique level set fr, that is formed by the union of the 

polytopes with label r. The best level set, frb, for pixel location x with intensity I (x) is the r 
label that results in the smallest (I (x)−cr)2. That is, frb is the best level set if (I (x) − crb)2 < 

(I (x) − cr)2, for ∀r ∈ {1, …, R}, and rb ≠ r.

Equation (5) is based on the concept of competing regions [13]. Since only one level set frb 

can be the best at each pixel, overlap of the different segments and creation of gaps are 

avoided without the need to add any additional coupling term. Only the polytopes in the 

immediate neighborhood of the pixel, i ∈ ℵ (x), will advance or retreat to include or exclude 

the pixel. Therefore, the energy in equation (5) becomes minimum when the polytopes that 

are part of the best level set label, rb, include the pixel at x, and all the remaining polytopes 

in the neighborhood with other labels exclude that pixel. For example, from Fig. 3(d) the 

green and yellow polytopes retreat to exclude the pixel x, and the green polytope advances to 

include the pixel. Fig. 3(e) shows the final result with no visible overlap or gap. The energy 

is minimized using gradient descent by computing the derivatives of equations (5) with 

respect to each discriminant parameters, wijk. Since we only look at a fixed number of 

neighboring polytopes at each pixel, the computational time of the ED term is independent of 

the number of regions R to be simultaneously segmented.

3. EXPERIMENTS

In order to evaluate the proposed DNLS two-phase and multiphase algorithms, we compare 

them with their corresponding conventional signed distance function-based CV two-phase 

and multiphase techniques [20, 14]. We use the optimized implementations of the two-phase 

and multiphase CV level sets available in the latest Insight Segmentation and Registration 

Toolkit (ITK) [21]. Our algorithm is also implemented in C++ on ITK. For quantitative 

comparison we use Dice coefficients (in %) and CPU time (in seconds).

Two-phase (1 Object) Segmentation Results

The third and fourth columns in Fig. 4 shows the segmentation results using DNLS and CV, 

respectively. As can be seen from the figure, the DNLS method produces similar (or better) 

segmentation results compared to the CV method. However, DNLS achieves these results at 

a much faster computational speed. Table 1 shows both the CPU time required and the DICE 

score of the segmentation results for images shown in Fig. 4. The computational time for the 

CV level set is shown for both the dense and the sparse implementations available in ITK 

[21]. It can be seen from the table that, the DNLS achieves equivalent DICE scores with a 

computational speed of more than 10 times compared to even the fastest sparse 

implementation of the CV method. DNSM parameters of N = 100 and M = 16 are found to 

be sufficient to give smooth segmentation.
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Multiphase Segmentation Results

In this section we present the results of two experiments. In the first experiment, we present 

the effect of initialization using 2-photon microscopy image of spine shown in Fig. 5(a) and 

compare the performances of the proposed DNLS-multiphase with the standard CV-

multiphase level set. As can be seen from Fig. 5(c) and (d), when multi-Otsu threshold [22] 

is used to first obtain good initialization both the DNLS-multiphase and DNLS-multiphase 

give good segmentation. However, when random initialization shown in Fig. 5(e) is used, the 

CV-multiphase level set converges to a poor segmentation as shown in Fig. 5(g); whereas, 

our DNLS-multiphase still converges to a good segmentation as can be seen from Fig. 5(f). 

In the second experiment, we show the effect of the number of objects to be segmented on 

the computation time. For this purpose, we generate phantom images with various number 

of objects; one example with 12 objects is shown in Fig. 6(b). Figure 6 shows the 

computation time as a function of the number of objects in the images: using the CV-

Multiphase with sparse implementation (dashed line), and using the DNLS-multiphase (solid 

line). The time in the graph is obtained with similar segmentation quality of around 98.5% in 

DICE. The graph shows that the computation time needed by the CV-Multiphase grows 

exponentially as the number of objects increase. On the other hand, the proposed DNLS-

Multiphase requires an almost constant computation time independent of the number of 

objects to be segmented. The memory required also remains constant in the proposed 

DNLS-multiphase, because the number of polytopes is fixed, and only their labeling changes 

as the number of objects change.

4. CONCLUSION

In this paper, we presented a novel parametric level set method that naturally keeps the level 

set function regular all the time, and that does not need any form of re-initialization or 

adding any regularizing term. Due to its parametric nature the DNLS method also reduces 

the dimensionality of the problem and its time step is not limited by the standard CFL 

condition, resulting in much shorter computation time. We also presented the DNLS-

multiphase framework for simultaneous segmentation of multiple objects. The proposed 

DNLS-multiphase approach has the highly desired properties that it is less sensitive to 

initialization, and its computational cost and memory requirement remain almost constant as 

the number of objects to be segmented grows, while also representing each object with a 

unique level set.
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Fig. 1. 
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Fig. 2. 
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Fig. 3. 
a) Multiphase image. b) and c) show the effect of applying EL. d) shows the effect of the ED 

term, using enlarged polytopes for clarity, and the arrows show the direction of their 

deformation. e) Final segmentation result.
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Fig. 4. 
The first and second columns show the images to be segmented and the initialization. In the 

third and fourth columns are the segmentation results using our DNLS and CV methods, 

respectively. We use N = 100 and M = 16.
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Fig. 5. 
a) The image to be segmented. (c) and (d) are segmentations using the DNLS and CV 

multiphases respectively, using the Multi-Otsu threshold initialization shown in (b). (f) and 

(g) are segmentations using the DNLS and CV multiphases respectively, using the random 

initialization in (e).
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Fig. 6. 
a) Computation time as a function of the number of objects to be segmented. b) An example 

of the multi-object image used.
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Table 1

Quantitative comparison of DNLS and CV methods for images in Fig. 4 (phantom image top and medical 

bottom)

Method Medical Image Phantom Image

DICE(%) TIME(s) DICE(%) TIME(s)

CV Dense 98.2 30.67 98.8 30.64

CV Sparse 98.2 5.74 98.8 5.67

DNLS 98.4 0.57 99.1 0.55
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