KNOWING WHO TO LISTEN TO: PRIORITIZING EXPERTS FROM A DIVERSE
ENSEMBLE FOR ATTRIBUTE PERSONALIZATION

Shrenik Lad", Bernardino Romera Paredes®, Julien Valentin®, Philip Torr*, Devi Parikh"

1. Virginia Tech 2. University of Oxford

ABSTRACT

Learning attribute models for applications like Zero-Shot
Learning (ZSL) and image search is challenging because they
require attribute classifiers to generalize to test data that may
be very different from the training data. A typical scenario
is when the notion of an attribute may differ from one user
to another, e.g. one user may find a shoe formal whereas
another user may not. In this case, the distribution of labels
at test time is different from that at training time. We argue
that due to the uncertainty in what the test distribution might
be, committing to one attribute model during training is not
advisable. We propose a novel framework for attribute learn-
ing which involves training an ensemble of diverse models
for attributes and identifying experts from them at test time
given a small amount of personalized annotations from a
user. Our approach for attribute personalization is not spe-
cific to any classification model and we show results using
Random Forest and SVM ensembles. We experiment with
2 datasets: SUN Attributes and Shoes and show significant
improvements over baselines.

Index Terms— Attribute Learning, Ensemble Training,
User Personalization

1. INTRODUCTION

Attributes are mid-level semantic properties of images like
shiny, furry, metallic, etc. that are shared across categories.
Recent research has shown that attributes have helped a va-
riety of applications in computer vision ranging from object
recognition [, 2] and segmentation [3] to image description
[4]. The fact that they are semantic and are shareable across
categories makes them a suitable modality for novel forms of
supervision, where humans can train visual models by con-
veying domain knowledge about the visual world. In image
search, users can define a query using attributes (e.g., “find me
black, formal shoes”), or provide feedback to a search engine
to change the results along a certain attribute (e.g., “find me
shoes that are more shiny than this”) [5]. Zero-Shot Learning
(ZSL) is another application where the task is to recognize
previously unseen categories whose attribute descriptions are
provided by a user but no training instances are available (e.g.,
recognizing a giraffe using just the knowledge that giraffes are

four-legged and have long necks) [1].

Attribute classifiers are typically trained using images of
certain training categories using annotations gathered from
the crowd. These annotations are inexpensive and convenient
to obtain via services like Amazon Mechanical Turk (AMT).
Due to difference in perspective of various AMT workers, the
annotations of multiple workers are averaged to get the final
label for each training image. At test time, different users
may have their personalized perception of an attribute, partic-
ularly for subjective attributes; a shoe that is formal for one
user may not be formal for another user (different distribution
of labels). As a result, generic attribute models trained from
crowdsourced annotations may fail to satisfy individual user
preferences at test time [6].

Since the test distribution is unknown at training time, we
argue that committing to any one model for an attribute is
not wise. Instead, learning an ensemble of multiple models
for the attributes, where each model specializes in different
parts of the feature space or learns different aspects of the at-
tribute, is a better strategy to hedge against the uncertainty
of the test distribution. We learn diverse models by training
them on different subsets of the training (seen) categories. If
absolutely no information is available about the test data, it is
not possible to identify which models are likely to be a good
fit for the particular task. In interactive applications like im-
age search, a user can annotate a few images at test time to
convey their notion of the attribute. Using this limited super-
vision, we find the experts from the ensemble that are well
suited for that particular user and only use them for attribute
prediction. We adopt a greedy technique for identifying ex-
perts where we pick the best performing models on the small
set of labeled images from the user.

2. RELATED WORK

Ensemble methods like Random Forests (RF) and boosting
learn multiple hypotheses for the same task and combine them
for final prediction. Random forests have been shown to help
various tasks in computer vision like image segmentation [7,

], pose estimation [9] and edge detection [10]. Recently,
CNN based ensembles have achieved state of the art perfor-
mances in classification and detection challenges [1 1, 12, 13].
The CNNss in these ensembles are averaged for final predic-



tion. The different classifiers in an ensemble can be com-
bined in a soft way via sum rule, product rule or majority vote
[14, 15], or in a hard way by selecting only an individual clas-
sifier [16, 17] or a subset of classifiers [18]. Multiple Choice
Learning [19] learns to predict multiple outputs, with the aim
that the best output is close to ground truth. A re-ranker model
whose parameters are also learned from training data, is used
to pick one of the outputs. Our approach is also based on
identifying a subset of models at test time but unlike previous
approaches, our goal is to adapt the ensemble output to a new
distribution.

Attributes have been used extensively for a variety of
applications in computer vision such as object recognition
[20, 21], scene understanding [22, 23], image description
[4, 24], image search [5], clustering [25] and fine-grained
recognition [26]. Many existing methods learn the attributes
independently [23, 2, 1], often using linear models. To
avoid learning coincidental correlations, [2] selects category-
specific features that discriminate instances of the category
containing an attribute from instances of the same category
without that attribute. This approach does not apply to sce-
narios where attributes are defined at the category-level (e.g.
all zebras are striped) as opposed to at the instance-level
(e.g. this chair is wooden). With a similar goal of avoiding
coincidental correlations, Jayaraman er al. [27] decorrelate
attributes by encouraging feature competition between un-
related attribute groups and feature sharing within attributes
of the same group. All of these existing works for attribute
learning rely on a single attribute model to generalize to
novel categories. Instead, we propose to learn multiple di-
verse models per attribute so that experts can be identified for
individual users at test time.

Personalized applications like image search involve
learning the user perception of relevance, and retrieving user
specific results. Attributes being both machine detectable and
human interpretable, serve as a useful mode of communica-
tion between humans and machines [5, 21, 25]. Attribute-
based feedback (e.g., “find me shoes more stylish than this”)
has been shown to improve image search [5]. [25] proposes
an approach to personalized constrained clustering where a
user actively guides the machine by providing attribute-based
explanations (e.g., “these two faces must be in the same clus-
ter because both are male and young”). Studies have shown
that humans tend to differ in their perception of subjective
properties like cool, formal, etc. [28]. Kovashka and Grau-
man [6] introduce personalization in attribute learning by
first training a generic attribute model using crowdsourced
annotations and adapting the model to individual users at test
time. Having a single model for an attribute limits the extent
to which the model can adapt. Our approach instead identifies
experts from a diverse pool of models at test time. We show
that our approach outperforms [6].

Domain Adaptation is used to adapt a model trained
from a source distribution to a different target distribution.

We share similar goals. Unsupervised domain adaptation
approaches [29, 30, 31] assume access to unlabeled data
from the target distribution. Semi-supervised domain adapta-
tion approaches [32, 33] use a few labeled samples from the
test distribution (with or without the unlabeled pool), either
during training [32] or at test time to re-train or update the
model [34, 15]. The Adaptive SVM [34] technique used by
Kovashka and Grauman for personalized attributes [0] is one
such approach that adapts an SVM learned from a source
distribution to a target distribution using a few labeled exam-
ples from the target distribution at test time. Note that our
approach is not specific to a classifier. Hence, we can train
an ensemble of diverse adapted models and then identify the
(adapted) experts that are best suited for the test distribution
(after all, some models will adapt better than others). In our
experiments, we show that this approach outperforms a sin-
gle adapted model as well as averaging the response of all
adapted models in the ensemble.

3. APPROACH

We first describe our procedure to train diverse attribute mod-
els using Random Forests and SVMs, and then our approach
for identifying experts from the ensemble given a small set of
personalized attribute annotations at test time.

Let M be the number of binary visual attributes in our
vocabulary that we want to learn. For training the attribute
classifiers, we are given a set of training images X, where
each image is annotated with attribute and category labels.

3.1. Training a Diverse Ensemble

We train multiple diverse models for each attribute in the vo-
cabulary. These are generic models trained with a fixed set
of training categories and crowdsourced annotations. Each
model in the ensemble is trained with a different subset of
the training data. Specifically, we train each model with a
randomly sampled subset of the training categories (as op-
posed to training instances). This is done to encourage more
diversity where each attribute model learns a notion of the at-
tribute relevant to its own training categories. The categories
are sampled with replacement.

Let p;,, denote the score/probability for the attribute a,,
given by the " model in its ensemble. When there are no per-
sonalized annotations available, the final score for attribute
am, can be computed by simply averaging the scores of all
models. If x denotes the image and 7' is the number of di-
verse models in the ensemble, the attribute prediction of the
ensemble is given by

1 T
t=1

We train Random Forests and SVM based ensembles as
described in the following sections.



3.1.1. Random Forests

Consider a randomized decision forest with T trees. Let f be
the low-level feature vector of . The training of classification
trees involves growing the trees recursively by learning (6, 7)
pairs at each node, where fy denotes the feature on which a
node is split and 7 denotes the threshold.

Instead of training the attributes independently, we train
the attributes jointly using multi-output Random Forests,
where each tree predicts all M attributes. This is because
each tree can learn different correlations between attributes
along with specializing on different categories.

The (6, 7) pairs are learned so as to maximize the infor-
mation gain at each node. Since we are learning attributes
jointly, the entropy computation is over the distribution of M
attributes. Ideally, we would like to estimate the exact entropy
of the joint distribution which has 2 possible states, but es-
timating this is not feasible with any reasonable quantities of
data. The joint entropy can be approximated in many ways,
for e.g., sum of individual attribute entropies at a node ({1
norm) that assumes independence of attributes [35], or maxi-
mum of individual attribute entropies (¢, norm) that assumes
complete dependence between attributes. We use the {5 norm
of the individual entropies as a tradeoff between the two.

> Hp(X)? )

H,,(X) denotes the entropy of attribute a,, at the node,
which can be computed simply by counting the number of in-
stances where the attribute is present/absent. At the leaves of
a tree t, we store the posterior probabilities py,, (x) for all M
attributes, where py,,, () indicates the probability of attribute
an, being present in a training instance x that falls in that leaf
node. This is indexed by the tree ¢ because each instance can
fall in only one leaf of a tree. The probabilities are computed
independently for each attribute from the training data present
at the leaves.

3.1.2. SVM

We train an ensemble of 7' SVMs for each attribute, resulting
in T x M models in total. Unlike RFs, here the attributes are
trained independently which is commonly done in existing
works [2, 1, 27]. We use linear kernel and the C' parameter
for each SVM is selected after cross-validation on a held-out
set from the training categories. If wy,, represents the weight
vector of the ¢-th SVM for attribute a,,, the score on image x
from the ¢-th SVM is given by

Pem () = Wi T f () (3)

3.2. Identifying Experts - Personalized Attributes

Eq. 1 gives equal importance to every model in the ensem-
ble. However, different models may have different prediction

accuracies depending on the user. Hence, we identify expert
models from the ensemble for each user and only use them
for prediction.

Having a set of T' diverse models for attribute a,, and
a few personalized labeled images from a user, we evaluate
each model in the ensemble individually on the labeled set.
The models are then sorted based on their performances on
the labeled images.

Specifically, if Xy = (fu, yu) denotes the labeled data of
auser U for attribute a,,, where f denotes feature descriptors
and y denotes ground-truth attribute labels, the error of model
t for attribute a,,, is:

I (t) = A(pem (Xv), yu) 4

where A is a prescribed loss function. Note that each at-
tribute need not have a different set of labeled images Xy,
since one image can be annotated with multiple (possibly all)
attributes by the user.

When a domain adaptation technique is available for the
generic classifier (e.g., Adaptive SVM for SVMs), we first use
Xy to adapt each model in the ensemble. The adapted models
are then evaluated on Xy to compute [,,,(¢). Since Xy is
being used for both purposes, to avoid overfitting, we adopt a
N-fold cross-validation technique. In each fold, the models
are adapted using the labeled images from N —1 folds, and the
predictions of the adapted models on the remaining fold are
stored. After N folds, each model is adapted using the entire
labeled Xy;. The loss of each model on X is estimated to
be the loss of the stored predictions. In this way, we estimate
I (t) on entire Xy;.

We sort the models based on I,,(¢) to find a ranking of
the diverse models for individual users. After identifying the
ranking of the models, we use only the top K models’ pre-
dictions. If the experts for a,,, are indexed by ey, the attribute
prediction for a,, is computed as:

1 K
Pm(m) = ? Zpekm($> (5)
k=1

Note that the baseline approach in Eq. 1 uses all 7" models.
Our approach in Eq. 5 uses only the Top K experts.

4. EXPERIMENTS AND RESULTS

The generic models for the attributes are trained using the ap-
proach described in Sec. 3.1. At test time, a small amount of
images annotated with personalized attribute labels are avail-
able using which we find experts as described in Sec. 3.2.
We compare the following approaches: Single Generic:
A single generic model trained using all available training
data is applied directly on the new users at test time. This
does not require any personalized labeled data. Ensemble
Generic: The ensemble of generic models (Sec. 3.1) is ap-
plied directly on the new users by averaging all models’ pre-
dictions. This also does not require any personalized labeled
data. Top K - Generic: Our approach of finding experts from
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Fig. 1: User personalization results. Adaptive SVM based approaches are not applicable in case of RFs (right)

the generic ensemble and using top K models for attribute pre-
diction. A small amount of personalized labeled data is used.
Single Adapted: A single generic model is adapted for the
new user using Adaptive SVMs [6, 34]. Personalized labeled
data is used. Ensemble Adapted: Each generic model in the
ensemble is adapted for the new user using Adaptive SVM.
All adapted models are used by averaging the adapted mod-
els’ predictions. Personalized labeled data is used. Top K -
Adapted: Our approach of finding experts from the adapted
models and using the top K models for attribute prediction.
Personalized labeled data is used.

Note that the Adaptive SVM based approaches are appli-
cable only in case of SVMs and not Random Forests. Com-
paring Top K - Generic with Ensemble Generic and Top K -
Adapted with Ensemble Adapted shows the benefit of our ex-
pert selection approach. Comparing Single Adapted with Sin-
gle Generic and Ensemble Adapted with Ensemble Generic
shows the benefit of Adaptive SVM (not our contribution).
Comparing Ensemble Generic with Single Generic and En-
semble Adapted with Single Adapted shows the benefit of
using ensemble models over single models. Another natural
baseline to consider is to learn attribute models from scratch
using only the labeled data from new users. However, in our
experiments we found that this performs significantly worse
than a single generic model. This was also found by [6] for
personalization of attributes.

We experiment with two datasets for the user personaliza-
tion scenario: Shoes [36] and SUN Attributes [23].

Shoes dataset consists of images from 10 shoe categories
like boots, flats, sneakers. The dataset contains 10 binary at-
tributes like formal, shiny, open. The dataset contains around
14000 images in total with crowdsourced attribute annota-
tions. [6] provides personalized attribute annotations on a
small subset of 60 images for 10 different MTurk users. We
reserve 30 images from these for adapting and identifying the
experts and the remaining 30 images are used for evaluation.
The generic attribute models are trained using 200 images
from each shoe category. We use GIST and color histogram
features available with the dataset.

SUN Attributes dataset consists of ~14000 scene im-
ages belonging to more than 700 fine-grained categories. The

dataset has 102 attributes like natural, open, warm, out of
which 10 subjective attributes were chosen by [6] for person-
alized annotations. Similar to Shoes dataset, personalized an-
notations are available on a subset of 60 images for 5 differ-
ent MTurk users. We follow the same protocol as in Shoes
for evaluation. The generic attribute models are trained us-
ing 13000 images. We use GIST, HOG and SSIM features
available with the dataset.

The generic models are adapted for each user separately
at test time using their personalized annotations. We average
attribute prediction accuracy across all users and attributes.
The results are also averaged across 30 runs, where we sample
different labeled images in each run. The metric used is nor-
malized accuracy = w (also used by [60]), where TPR
and TNR denote true positive and true negative rates resp. We
train 100 models in the ensemble for SUN Attributes and 50
models for Shoes (Shoes has relatively less training data).
Results: Fig.1 (left) shows results on Shoes dataset when
SVMs are used. Our Top K - Generic approach performs
better than both Single Generic and Ensemble Generic base-
lines, and our Top K - Adapted approach performs better than
Single Adapted and Ensemble Adapted. This shows that we
are able to identify user specific expert models from the di-
verse ensemble using limited user annotations. Results on
SUN Attributes using SVMs can be found in Fig.1 (middle).
The trends are similar to Shoes. Note that even though En-
semble Adapted performs little worse than Single Adapted in
SUN-SVM, our Top K approach is able to identify experts
and do better than the baselines.

Fig.1 (right) shows the results on SUN Attributes dataset
when Random Forests are used. Again, Adaptive SVM based
approaches are not applicable here. Top K - Generic does sig-
nificantly better than Single Generic and Ensemble Generic.
Nearly 2.5% gain is obtained over Singe Generic and 1% gain
is obtained over Ensemble Generic. The results indicate that
our approach is not specific to any classification model and
gives significant gains over existing approaches that use a sin-
gle generic model or a single adapted model.
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