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ABSTRACT
Many previous methods have showed the importance of con-
sidering semantically relevant objects for performing event
recognition, yet none of the methods have exploited the power
of deep convolutional neural networks to directly integrate
relevant object information into a unified network. We present
a novel unified deep CNN architecture which integrates archi-
tecturally different, yet semantically-related object detection
networks to enhance the performance of the event recognition
task. Our architecture allows the sharing of the convolutional
layers and a fully connected layer which effectively integrates
event recognition, rigid object detection and non-rigid object
detection.

Index Terms— CNN architecture, event recognition, ob-
ject detection, multitask learning, malicious events

1. INTRODUCTION

To better perform event or action recognition, recently intro-
duced approaches have exploited the importance of consider-
ing semantically relevant and distinctive objects. For exam-
ple, Althoff et al. [1] showed that the statistics derived from
object detection results can better represent events. Joel et
al. [2] claimed that event recognition performance can be en-
hanced by incorporating semantically related keywords which
represent the salient objects. Jain et al. [3] showed that ob-
jects do matter for actions by encoding object categories that
benefit the action recognition as well as object localization.

Recently, Wang et al. [4] presented an approach which
uses two separate deep convolutional neural networks (CNNs),
an object CNN and a scene CNN. They used a simple late fu-
sion to combine the fully connected (FC) layer outputs from
the networks and applied a support vector machine (SVM)
for classification. An enhanced network was introduced in
[5] by incorporating the local features (TDD: Transformed
Deep-convolutional Descriptor) because the features from the
FC layers were found to be weak in capturing the local infor-
mation in the images. Both approaches use separate networks
which are integrated with a late fusion.

?These authors contributed equally to this work

In our approach, we exploit the power of deep convolu-
tional neural networks (CNNs) in combining different net-
works (for different tasks) together in an end-to-end multi-
task learning scheme. Learning a unified network allows bet-
ter harvesting of the semantically relevant object information
to boost event recognition. We incorporate event recogni-
tion as a primary task and relevant object detections as sec-
ondary tasks. This approach is motivated by previously meth-
ods [6, 7, 8, 9, 10] which have demonstrated that a task can
be better learned assisted by appropriate secondary tasks.

There are several technical challenges in constructing a
unified deep network which integrates image classification
(event recognition in our case) and object detection which are
architecturally different in nature. First, the image classifica-
tion system must pass an input image through the sequential
layers of a network and generate class probability scores as
an output [11, 12, 13, 14]. Second, object detection must gen-
erate local candidate object region of interests (RoIs) which
are evaluated to compute their scores. We inherit a widely
used object detection approach called the Fast R-CNN [15]
for this. This object detection approach uses RoI generation
and RoI pooling steps which are the two primary differences
when compared to the aforementioned image classification.

To integrate these architectures, we devised a unified
CNN framework which enables the sharing of the convolu-
tional layers, one FC layer and one RoI pooling layer between
image classification and object detection. As the CNN is in-
tegrated by object detection modules, we call it the Integrated
Object Detection (IOD)-CNN. The fact that the image clas-
sification also uses the RoI pooling layer (which is different
from typical image classification) not only makes the network
differ in appearance, but also adds a beneficial functionality.
With the help of the shared RoI pooling layer, it is no longer
necessary to resize the input images to a fixed size. This
allows the use of high-resolution images as input, providing
room for classification performance enhancement.

For image classification, the input to the RoI pooling (i.e.,
RoI), is set to be the entire region of the input image. For
object detection, object proposals generated by the selective
search (rigid objects) or by the multi-scale sliding window
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search (non-rigid objects) are used as inputs to the RoI pool-
ing.

Our contributions can be summarized as:

1. The introduction of a novel unified deep CNN archi-
tecture which integrates architecturally different, yet
semantically-related networks for different secondary
tasks to enhance the performance of a primary task

2. A demonstration of the effectiveness of the novel ap-
proach by showing that the performance of event recog-
nition (primary task) can be boosted by incorporating
rigid and non-rigid object detection.

3. The fact that our architecture can be further enhanced
by appending a late fusion, indicating that early-sharing
of the layers is complementary to the late fusion.

2. OUR APPROACH

2.1. IOD-CNN: Integrated Object Detection CNN

In this section, we elaborate on three tasks along with modifi-
cations we made to architectures which implement them. We
then explain how these different architectures are integrated
into a unified network.

Event Recognition. We use a common classification archi-
tecture, known as ConvNet, for event recognition. As shown
in Fig. 1a, the network typically consists of a number of
convolutional layers followed by a few FC layers. The input
is an image with predefined fixed width and height (for both
training and testing), while the output is the softmax proba-
bility estimates over all of the classes.

Rigid Object Detection. As shown in Fig. 1b, the Fast R-
CNN (FRCN) [15] was chosen to perform the rigid object
detection. Unlike the deep ConvNet which requires resized
images as input, the original FRCN architecture takes in a
full image as input and passes it through a series of convolu-
tional layers to generate a feature map. This map along with
the object proposals (approximately 2k) generated by selec-
tive search are then fed into a Region of Interest (RoI) pool-
ing layer. The output from the RoI pooling is fed into the FC
layers which are followed by two output layers: one for the
softmax class-wise probability estimation and the other for
the bounding box regression.

The bounding box regression is removed from our ar-
chitecture (dotted box in Fig. 1b) because the primary task
(event recognition) does not benefit from it. This is because
the power of bounding box regression in the original FRCN
is exhibited in the post-processing which is separate from
the learning process. We have experimentally observed that
when object detection is learned along with the bounding box
regression in a multi-task scheme, the performance degrades
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Fig. 1: IOD-CNN architecture. (top three) Architectures for
three separate tasks before the integration (bottom) A novel
architecture which integrates event classification with rigid
and non-rigid object detection

unless the bounding box regression post-processing is exis-
tent. In short, incorporating the bounding box regression into
our architecture will have a negative effect for the primary
task, as there is no chance to perform the post-processing to
make up for the loss.

Non-rigid Object Detection. Modeling the “objectness” for
objects with non-standard or non-rigid shape, such as smoke
or fire, is not only difficult but also computationally expen-
sive. Thus, instead of using selective search (i.e., used for
rigid object detection), which can be considered a fine scan-
ning method, we use a multi-scale sliding window strategy as
shown in Fig. 2. For one input image, five RoIs are gener-
ated: one covering the whole image region and the other four
covering the four overlapping regions with 2/3 height and 2/3
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Fig. 2: Multi-scale sliding window for non-rigid object detec-
tion

width of the whole region. These five RoIs are fed into the
network as shown in Fig. 1c.

Integrating the Different Architectures. The unified net-
work for training and inferencing are shown in Fig. 1d. The
training architecture consists of a series of convolutional lay-
ers, a RoI pooling layer, and three separate modules responsi-
ble for event recognition, rigid-object detection and non-rigid
object detection, respectively. Each module consist of one
shared and two non-shared FC layers. For testing, only the
components responsible for the event recognition (primary
task) are included in the architecture.

The training network takes an input image and passes it
through a series of convolutional layers until it reaches the
RoI pooling layer. At the same time, the input image goes
through two different sample generators: the selective search
and the multi-scale sliding window search, generating sam-
ples for rigid and non-rigid object detection, respectively. The
output of the convolutional layers along with the outputs of
the two sample generators are fed into the shared RoI pooling
layer. The three task-specific streams go through the FC lay-
ers. Each stream is connected to an appropriate loss function
at the end.

The effective integration of these architectures was made
possible by sharing the convolutional layers and the first FC
layer (known as fc6) which are learned to serve all three tasks.
Note that, the other two “task-specific” FC layers (fc7 and
fc8) are learned separately for different tasks. By sharing
these layers, we provide each task a means to associate the
information from the other tasks. In the experiments (Sec-
tion 3), we show that the performance of our primary task is
indeed boosted by this integration. In addition, although the
RoI pooling layer is not a layer to be learned, it serves a cru-
cial role in allowing full-size input images to be fed into the
convolutional layers without resizing.

It is noted in [11] that the first convolutional layer (conv1)
is more generic and task independent than other convolutional
layers. In our case, we share a similar philosophy, but we also
show that the network can be better learned when the over-
all set of convolutional layers is shared and learned together

between the semantically-related tasks.

2.2. Learning the Unified Network

We have found the network introduced by Krizhevsky et al.
[11] suitable for the single-task event recognition architec-
ture. To label the RoIs (for training purpose) in the rigid and
non-rigid object detection, we have used 0.5 and 0.2 as the
thresholds for the intersection over union (IoU) metric. While
the fc6 and fc7 are fine-tuned, the weights for fc8 are initial-
ized by samples from a Gaussian distribution with zero mean
and 0.1 standard deviation.

For every iteration, a batch of two images is used. We
made sure that each batch is comprised of one sample with a
benign label (a normal scene) and one with a malicious one
(which would draw attention of law enforcement). For train-
ing the rigid object detection, the network takes 64 RoIs from
each image which is the selected subset of the initial RoI set
provided by the selective search. For event recognition and
non-rigid object detection, 1 and 5 RoIs are generated per
image, thus 2 and 10 RoIs are used as one batch, respectively.

Cascaded Optimization. One technical challenge in learn-
ing the IOD-CNN is selecting the appropriate learning pa-
rameters. Naively using the parameters optimized for one of
the three modules may not be suitable for acquiring the best
performance out of the unified network. For the event recog-
nition and non-rigid object detection, all the RoIs acquired
from one image are used for one batch. However, for the rigid
object detection, approximately 2000 RoIs are generated per
image and only the subset of those RoIs (i.e., 64 for malicious
and 64 for benign) are used per batch. To allow more training
iterations for the rigid object detection module, we have em-
ployed a three step cascaded optimization strategy. The initial
CNN network is first trained on the Places Dataset [16]. Then
only the rigid object detection module is learned/fine-tuned
on the target dataset (Malicious Crowd Dataset in Section 3.1)
using the learning rate of 0.01, 30k iterations, and the step size
of 20k. Lastly, the unified network (i.e., IOD-CNN with all
the modules) is trained with the learning rate of 0.0001, 12k
iterations, and the step size of 8k.

3. EXPERIMENTS

3.1. Dataset

To demonstrate the effectiveness of our architecture, we use
the Malicious Crowd Dataset introduced in [2]. This dataset
was chosen as it contains not only the crowd event images
but also the ground truth labels for relevant objects which are
suitable for testing our architecture which requires both im-
age classification and object detection. The dataset contains
1133 crowd images, equally split into malicious and benign
classes. Sample images are shown in Fig. 3. The malicious
label is said to have been assigned to an image when the scene
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Fig. 3: Sample images from the Malicious Crowd Dataset
with two classes: benign and malicious events

Table 1: Event recognition average precision (AP). All
methods use [11] as the baseline architecture. Task: E: Event
Recognition, R: Rigid Object Detection, N: Non-rigid Object
Detection. [2]* reproduces the result of [2] with our network
learning strategy.

Method Tasks AP
Single CNN [2] - 72.2
Single CNN [2]* - 82.5
Single CNN+RoI pooling - 90.2
IOD-CNN E, R 91.8
IOD-CNN E, N 91.9
IOD-CNN E, R, N 93.6
2 CNNs&DPM+Score Fusion [2] - 77.1
OS-CNN+fc7&TDD Fusion [5] - 92.9
3 Separate CNNs+Score Fusion - 92.9
IOD-CNN+Score Fusion E, R, N 93.9
IOD-CNN+fc7&TDD Fusion E, R, N 94.2

would be alarming to a passerby or a law enforcement person-
nel. For both classes, the images contain two different types
of objects: rigid (e.g., cars) and non-rigid (e.g., smoke). The
dataset also provides the bounding boxes of the frequently ap-
pearing “malicious-related” objects which are police, helmet,
car, fire, and smoke. The bounding boxes are used to train
and evaluate the rigid and non-rigid object detection. Details
on how the objects are selected is given in [2].

3.2. Performance Evaluation

We have carried out a set of experiments to demonstrate how
our architecture integration approach can boost event recog-
nition performance to a new state-of-the-art. For all the ex-
periments described in this subsection, we have used the Ma-
licious Crowd Dataset briefly described in the previous sub-
section.

The first six rows of Table 1 show that IOD-CNN with-
out any fusion processing outperforms all the baseline single
CNNs. The results indicate that integrating rigid (R), non-
rigid (N), or both (R,N) object detections into the network all

Table 2: Single task versus multitask performance. C:
Classification, D: Detection, R and N used mean average pre-
cision (mAP) as the evaluation metric.

Method C/D Single-task (AP/mAP) Multi-task (AP/mAP)
E C 90.2 93.6
R D 11.8 11.0
N C 27.7 82.1

show superior performance, and integrating both works the
best. Moreover, we verify that incorporating the RoI pool-
ing layer which allows the input images of arbitrary size, in-
creases the performance.

In the last five rows of Table 1, we have also compared
IOD-CNN with two baselines [2, 5] which use multiple CNNs
and exploit fusion strategies. To make a fair comparison with
the baselines, we use the same fusion techniques, i.e., score
fusion [17] and fc7&TDD fusion. To generate a two stream
network, we prepared two networks pretrained on the Ima-
geNet [18] and the Places [16] Datasets, as in [5]. By ap-
plying the same score fusion or fc7&TDD fusion used in [2]
and [5], the performance of pre-fusion IOD-CNN is improved
by 0.3 and 0.6 AP, respectively. This indicates that the early-
sharing of the network layers (convolutional and one FC) is
complementary to the late fusion in terms of the performance.
The IOD-CNN with either of the fusion strategies outper-
forms all the baselines and the case where 3 separate CNNs
(E,R,N) are score-fused.

We have also carried out an experiment to analyze how
the performance of each task changes when all the tasks are
learned together using the IOD-CNN. Table 2 shows that the
event recognition and the non-rigid object detection perfor-
mance is boosted when learned together. Notably, the non-
rigid object detection performance improved drastically by
almost three fold.

4. CONCLUSION

We presented a novel unified deep CNN architecture which
integrates architecturally different, yet semantically-related
networks for different tasks to enhance the performance of
event recognition. The experimental results show that each of
the newly incorporated architecture components are crucial in
boosting the performance. The architecture which integrates
the two object detections with the event recognition outper-
forms the previous object-aware event recognition CNNs. As
one unified network is learned in an end-to-end fashion, the
training can also be performed more efficiently. Moreover,
the performance of our architecture can be further improved
by appending a late fusion approach. This indicates that the
within-network sharing of the layers is complementary to the
late fusion.
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