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ABSTRACT

Converting a color image to a grayscale image, namely de-
colorization, is an important process for many real-world ap-
plications. Previous methods build contrast loss functions to
minimize the contrast differences between the color images
and the resultant grayscale images. In this paper, we improve
upon a widely used decolorization method with two exten-
sions. First, we relax the need for heuristics on color orders,
which the baseline method relies on when computing the con-
trast differences. In our method, the color orders are incorpo-
rated into the loss function and are determined through op-
timization. Moreover, we apply a nonlinear function on the
grayscale contrast to better model human perception of con-
trast. Both qualitative and quantitative results on the standard
benchmark demonstrate the effectiveness of our two exten-
sions.

Index Terms— Decolorization, Color Orders, Non-linear
Perception, Contrast Preservation

1. INTRODUCTION

Although color images are more widely used, grayscale im-
age visualizations are still dominate in specific applications,
such as black-and-white printing and digital-ink display. De-
colorization, which refers to the process of converting three-
channel color images into one-channel grayscale images, is
thus fundamentally important for these usages. Since decol-
orization reduces the dimensions of the input signal, it in-
evitably results in information loss. The goal of decoloriza-
tion is thus to maintain as much of the visually distinguishable
information, namely contrast, as possible.

Many methods have been proposed to address this prob-
lem. Simple approaches, like directly extracting the L channel
of the CIELAB colorspace, often do not capture the salient
structures and suffer from significant detail loss, as shown
in Fig. 1b. Later methods preserve the contrast of the color
images by minimizing a contrast loss function. During opti-
mization, heuristics are often adopted to determine the color
orders, which change the signs of the contrast measure. A
widely used heuristic is a bimodel distribution introduced in
[1]. However, such a distribution may result in loss in details,
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Fig. 1: Example decolorizations by different methods.

unfaithful grayscale values and ringing artifacts, as shown in
Fig. lc.

We extend upon the widely used decolorization method
[1]' in two aspects. First, instead of applying a heuristic bi-
modal distribution on the color orders, we propose to incorpo-
rate the color orders directly into the contrast loss function to
obtain the optimal color orders as well as the grayscale values
through optimization. Second, we propose to apply a nonlin-
ear function on the grayscale contrast to model the nonlinear
characteristics of human perception. The two extensions re-
sult in a notable improvement over [1] in the decolorization
performance. As shown in Fig. 1d, the contrast and the visual
details are better preserved in our method than [1]. Addition-
ally, experiments on the standard decolorization benchemark
demonstrate that our method, using both extensions, outper-
forms different state-of-the-art approaches.

2. RELATED WORK

Various decolorization methods [1-19] have been proposed,
which can be categorized as local or global approaches.
Local methods assign different grayscale values to the
same color to enhance the local contrast. [2, 3, 5, 16] use
different approaches to obtain local contrast, which is then
added to the luminance channel. Neumann et al. [4] regard
the color and luminance contrast as a gradient field and ob-
tain the grayscale image via fast direct integration. Saliency
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measure is adopted in [6] where the authors focus on preserv-
ing the contrast in the salient regions. [19] use a Laplacian
pyramid decomposition to measure the local information.
These local decolorization methods, although preserving the
local contrast, may occasionally distort the constant color
regions [7].

Global methods, on the other hand, define linear or non-
linear mapping functions that map the same color to the same
grayscale value. Bala et al [8] sort the colors and assign
grayscale values accordingly. [9, 10] enforce the local and
global contrast between neighbouring pixels with empirically
determined color orders. [17] propose a constrained contrast
mapping paradigm in the gradient domain to map the gradi-
ent from the color image to the grayscale image, and then
reintegrate to generate the grayscale image. [15] derive the
grayscale image by maximizing the gradient correlation be-
tween each channel of the color image and the grayscale im-
age. Recent work [18] treat the decolorization function as the
sum of three subspaces. [1, 13, 14] propose a contrast preserv-
ing function and adopt a bimodal distribution to approximate
the color orders.

Our method falls within the global category. We propose
two extensions to the global method in [1], which lead to
state-of-the-art decolorization performance.

3. METHOD

In this section, we describe our decolorization algorithm,
with the two proposed extensions detailed in section 3.2.1
and 3.2.2.

3.1. Mapping Function

As in [1], we adopt a polynominal function f to map each
RGB color vector v = {v,, vy, U} to a grayscale value g:
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where €2 = {w;} are the parameters of the mapping function,
which we optimize on for each image. m; is the ith element
in {0, v, Uy, UrVg, VgVy, VyUy, VZ, V7, v} }. Although simple,
such a polynomial function is powerful enough to accurately
fit to highly nonlinear functions [1].

3.2. Contrast Loss Function

The goal of decolorization is to minimize the contrast loss
after decolorization, which is defined as F:

E= ) oy =) @)
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where x and y indicate two different pixels, P represents the
set of all possible pixel pairs, 6?x7y) is the contrast between
the pixel pair (z,y) in the grayscale image, and 0(; ) 18 the
corresponding contrast in the color image.

3.2.1. Color orders

In the baseline method [1], 87 | and 5(Cm’y) are defined as:

(z,y)
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where L, a,b are the corresponding values in CIELAB col-
orspace. sfx’y) is the sign function that determines the orders
for a pair of colors, which consequently determines the order
of the grayscale values after the optimization of E. In [1],
such a sign function is defined as a heuristic bimodal distri-
bution, which may result in visual artifacts in the converted
grayscale images as shown in Fig. 3.

In this paper, we remove the heuristics on color orders
by moving the sign function from the color contrast to the
grayscale contrast, and directly incorporate it into the opti-
mization of E. The new sign function on grayscale contrast
is defined as:

1 ifry > 1y, 9z > gy, be > by

Slogy = 1 i 72 <7y, 00 < gy, be < by (5)
|| otherwise
Where | - | represents the operation for computing absolute

values. The grayscale contrast is hence computed as:

After removing the sign function, the color contrast is directly
computed as the classic color difference formula:

o) = V(Lo — Ly)® + (ax — ay)? + (bs — by)2  (7)

With such a new sign function, for a pair of colors that
have a clear order (1, > 7y,gz > gy,bz > by or 17, <
Ty, 9z < Gy, bz < by), the corresponding grayscale values
9z, gy Will follow the same order after optimizing Eq. 2. Oth-
erwise, the color orders are determined to be the global opti-
mal ones that minimize the contrast loss E.

3.2.2. Non-linear perceptual contrast

According to the Weber-Fechner law [20], visual perception
of physical stimuli follows a logarithmic correspondence. For
decolorization, the aim is to preserve the contrast perceived
by the human visual system (HVS) the same in the grayscale
image and the color image. Hence, to better align with hu-
man contrast perception, we propose a second extension to
[1], where we consider nonlinearity of the percevied contrast.
Since the encoding in the CIELAB colorspace is designed to
already incorporate the HVS nonlinearity, a nonlinear func-
tion is applied only to the grayscale values. We obtain the
perceptual grayscale values p,, as follows:

 log(Bg. +1)
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B is a parameter to control the nonlinearity. The logarithmic
function ensures the range of p, to be the same as that of g,
([0,1]). The perceptual grayscale contrast is thus computed
as the difference between the perceptual grayscale values:
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According to Taylor’s theorem, p, — p, in Eq. 9 can be fur-
ther simplified into multinomial, which makes the optimiza-
tion process more stable:

Y
log(1+8) Bgy+1

Using the nonlinear perceptual contrast instead of the linear
contrast leads to better preservation of visual details. As il-
lustrated in Fig. 2, the green mark in the color image is better
preserved in the result using non-linear perceptual contrast
than that with linear contrast.

Pz — Dy = (gx - gy) (10)

(b) linear

Fig. 2: Comparison between linear and nonlinear contrast
measure.
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Combining the two extensions together, the global con-
trast loss E can be rewritten as:

c 2
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where sgm is defined in Eq. 5, p; — py and 5(Cz ) are com-
puted according to Eq. 10 and 7, respectively.

3.3. Clustering Colors

To minimize Eq. 11, all pixel pairs need to be considered,
which is time-consuming and redundant since many pixels
carry the same color. Following the technique in [13], we
speed up the computation by grouping similar colors together
and consider different color group pairs. Specifically, we first
perform K-means clustering in the CIELAB colorspace on all
pixels. The number of classes is automatically determined by
setting a threshold for minimum color distance between clus-
ters (we empirically set it as 30 in all experiments as a good
compromise between speed and accuracy). Such settings typ-
ically result in less than 50 classes per image. The contrast
loss E is then directly computed on the cluster pairs instead
of the pixel pairs, with each cluster represented by its mean

color.
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where C' represents the set of all cluster pairs. The weight
K(ci,e;) Of a cluster pair is determined as:

13)

where N, and N, are the number of pixels in the clusters c;
and c;, respectively. N is set to be 0.01Z with Z denoting
the total number of pixels in the image.

3.4. Optimization

Due to the absolute operation used in Eq. 5, the contrast loss
F is non-convex, and thus a numerical solution is difficult to
derive. We adopt the Adam gradient descent method [21] for
optimization, which was originally developed for optimizing
highly non-convex functions in deep learning. Similar to [1],
we first initialize 2 as {0.33,0.33,0.33,0,0,0,0,0,0}. We
perform 1000 iterations of gradient updates on the parameters
2 when minimizing Eq. 12 (on average 3 seconds per image).
The resultant grayscale image is then generated according to
Eq. 1 with the optimized parameters €2.

4. EXPERIMENTS

We validate our method on the standard decolorization bench-
mark [22], which has 24 colorful images covering both real-
istic and synthetic images. The parameter 3 is empirically set
to 0.5 for all images. The learning rate of the Adam optimizer
is set to 0.0005 for 1000 iterations.

4.1. Quantitative comparison

For quantitative comparison, we adopted the CCPR metric
proposed in [13].

#{(z. Y7, y) € Q,|9: — gy| < 7}
1Qll

where @ is the set of all pixel pairs whose color difference is
larger than 7. || Q]| is the number of elements in Q. By com-
puting the mean CCPR values with varying thresholds 7 from
1 to 15, we show the CCPR curves? in Fig. 4. Ours_E1 repre-
sents our method that only adopts the color orders extension
while still using the linear contrast measure. Ours_E1E2
represents our method that uses both extensions. We com-
pare with [1, 6, 15, 18] since they report better decolorization
performance than the earlier ones [2-5,7-12, 14, 16, 17)3.
Compared with the baseline method [1], the Ours_E1
method clearly improves the performance by a remarkable
margin, demonstrating the effectiveness of the color orders
extension. QOurs_E1FE2 further improves over Ours_F1,

CCPR =

(14)

2Higher CCPR curve represents better decolorization performance.
3for [13, 19], neither the results on this benchmark nor the code are re-
leased.



(a) Color images (b) L in CIELAB (c) [1]

proving that using the nonlinear perceptual contrast model
leads to better decolorization performance.

The Ours_E1 method already achieves comparable per-
formance against the state-of-the-art decolorization methods.
By further incorporating the nonlinear perceptual contrast, the
Ours_E1E2 method clearly reaches the best CCPR values,
even better than the methods [6, 15] that consider additional
information like saliency or gradient.

4.2. Qualitative comparison

We show qualitative comparison in Fig. 3. Our method gener-
ates favorable or comparable results against other approaches.
For example, in the first row, our decolorization result pre-
serves the high contrast between the flower and the leaves
while sill preserving the line structures on the flower and the
leaves. Methods like [6, 15] generate high-contrast results
while missing the details on the leaves and the flower. Re-
sults produced by [1, 18] present the details but suppress the
high contrast of the flowers. For the image in the forth row,
the gradually changing colors are well preserved in our re-
sult without any line artifacts as in [6] or contrast loss as
in [15,18]. More examples can be found in the supplementary
materials.

5. CONCLUSION

This paper presents a decolorization approach that extends
upon a widely used method [1]. We first remove the heuristics

(d) [6]

(e) [15]
Fig. 3: Qualitative comparison with different state-of-the-art decolorization methods.
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Fig. 4: Quantitative comparison with different state-of-the-art
decolorization algorithms.

for color orders presented in [1]. Instead, we directly incor-
porate the color orders into the contrast loss function and op-
timize it through a gradient descent technique. Moreover, we
apply a nonlinear function on the grayscale contrast to align
with the nonlinear characteristics of human perception. Using
these two extensions, our method outperforms the state-of-
the-art decolorization approaches on the standard decoloriza-
tion benchmark.
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