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ABSTRACT

In this paper, we propose a new image denoising method, tai-
lored to specific classes of images, assuming that a dataset
of clean images of the same class is available. Similarly to
the non-local means (NLM) algorithm, the proposed method
computes a weighted average of non-local patches, which we
interpret under the importance sampling framework. This
viewpoint introduces flexibility regarding the adopted priors,
the noise statistics, and the computation of Bayesian esti-
mates. The importance sampling viewpoint is exploited to ap-
proximate the minimum mean squared error (MMSE) patch
estimates, using the true underlying prior on image patches.
The estimates thus obtained converge to the true MMSE esti-
mates, as the number of samples approaches infinity. Exper-
imental results provide evidence that the proposed denoiser
outperforms the state-of-the-art in the specific classes of face
and text images.

Index Terms— Patch-based image denoising, class-
adapted denoising, non-local means, minimum mean squared
error, importance sampling.

1. INTRODUCTION

Image denoising is one of the classical and fundamental prob-
lems in image processing and computer vision. In the past
decade, the state-of-the-art has been dominated by patch-
based methods, not only in image denoising, but also in more
general inverse problems. In some approaches (called in-
ternal), the image is denoised using information exclusively
extracted from the noisy image. For example, denoising is
carried out by averaging similar patches (as in NLM [L]), by
collaboratively filtering sets of similar patches (as in BM3D
[2]), by learning a Gaussian mixture model (GMM) from the
noisy image and then using it a prior to obtain MMSE patch
estimates [3]], or by obtaining maximum a posteriori (MAP)
patch estimates using a Gaussian prior estimated from a col-
lection a similar patches [4]. The so-called external methods
take advantage of a dataset of clean image patches, which
can be used in different ways: to denoise each noisy patch
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by computing weighted averages of clean patches [5]; to
learn a prior for clean patches (e.g., a GMM [6]), which is
subsequently used to denoise the noisy patches [7]. Hybrid
external/internal methods have also been proposed [8].

Lety = x +n € RP, where n ~ N(0,0°I) is additive
Gaussian noise of variance o2, denote a noisy observed im-
age patch and x € RP the corresponding clean patch. Some
external image denoising methods estimate x via the non-
parametric weighted average
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where {z;, j = 1, ..,n} is a set of clean patches selected from
an external dataset, w; = exp(— 52z ||y: — z;|[3). If {z;,j =
1,..,n} is a set of samples from a prior px, then

X =

lim X = E[x|y],
n—oo

i.e.,as n — 0o, X converges to the MMSE estimate of x under
that prior [9]. However, computing (1)) using all the patches in
some large external dataset is computationally very demand-
ing. In order to mitigate this computational hurdle, k nearest
neighbours (k-NN) clustering has been used [3]] to find sim-
ilar patches and thus to reduce the number of patches aver-
aged in (I). However, given that the clustering is performed
on noisy patches, its quality is often questionable.

The success of patch-based denoising methods relies cru-
cially on the suitability of the priors used. Although several
studies provide evidence that leptokurtic multivariate distri-
butions are a good fit to image patches [[10]], those densities
have seldom been used for denoising, due to algorithmic hur-
dles raised by the learning procedure and posterior inference.

In many applications, the noisy image is known to belong
to a specific class, such as text, face, or fingerprints, and this
knowledge should be exploited by the denoising method. One
approach to implement this idea is to use an external method,
based on a dataset of clean images from the specific class in
hand, rather than a general-purpose dataset of natural images
[L1L [12]. The obvious rationale is that more similar patches
can be found in the external set of images from the same class
than in a generic dataset, and the statistical properties of the
patches derived from the class-specific dataset are also better
adapted to the underlying clean image.



In this paper, we first show that the non-parametric for-
mula in (1) can be derived from the importance sampling (IS)
framework [[13[], which is a method of the Monte-Carlo family
[14]. Then, based on the IS perspective, we propose an im-
age denoising method using class-specific external datasets,
with two stages: in the first stage, a set of multivariate gen-
eralized Gaussian (GG) distributions is learned from the ex-
ternal clean patches; then, noisy patches are denoised by first
assigning each to one of the learned GG distributions, and
then approximating the MMSE estimate via (I). Under the IS
framework, the MMSE patch estimates are approximated by
sampling directly from the patches from which the GG dis-
tributions were estimated. The obtained results show that the
proposed method outperforms other state-of-the-art general
and class-specific denoisers.

In the following sections, we first describe the IS view-
point for (I). Then, the proposed method for class-specific
image denoising is described. Finally, experimental compar-
isons with the state-of-the-art methods are conducted.

2. IMPORTANCE SAMPLING

A fundamental step in a patch-based denoising algorithm is
the estimation of the clean patches from the noisy ones. A
classical result in Bayesian point estimation is that the MMSE
estimate is given by the posterior expectation [[15]:

E[x|y] :/XleY(X|y) dx :/XPYIX(;’Y)(C;)px(X) dx.,
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where px is the prior and py|x is the likelihood function,
and the second equality is simply Bayes’ law. Computing (2))
is usually far from trivial, except when a conjugate prior is
used [15]]; a famous example is the Gaussian (or mixture of
Gaussians) prior with a Gaussian likelihood, for which the
posterior expectation has a simple closed-form.

One way to approximate (2)) is to simply average random
samples x1,...,X, ~ px|y. However, sampling from px |y
may not be a simple task. In particular, its normalization con-
stant py (y) is itself hard (or impossible) to compute, as it is
itself an integral that is intractable for arbitrary priors.

One way to circumvent the difficulty in sampling from
px|y is to resort to importance sampling (1S) [13, [14]. By
invoking the law of large numbers, E[x|y] can be approx-

imated by averaging xim;yi((“;l)x") using random samples
X1,...,X, ~ px. Since the marginal density py (y) is still

unknown, we may resort to the so-called self-normalized IS
(SNIS), which does not require knowledge of the normaliza-

tion constants of target density px |y [13}16]:

ij Py x (¥]%;)
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where x, ..., X, is a set of independent samples drawn from
px. It can be shown that lim,,_, o, E, [x|y] = E[x|y] [13].
Notice that (TJ) is formally equivalent to (3], as long as

Py ix (¥]%) o exp(—5zx — y12),

i.e., if the noise is zero-mean Gaussian with variance o2, and
the set {z;, j = 1, .., n} in (I)) contains samples from the prior
px. A special case of this denoiser, which was used to obtain
a lower bound that denoising algorithms can achieve [9], just
averages the central pixel of the patch; this corresponds to
replacing x; with x; . in both the left and right hand sides of
(@), where z; . denotes the central pixel of patch x;.

In [17], it was shown that, for a fixed number of samples
n, the MSE of the estimator for the central pixel is re-
duced if the variance of samples, given the noisy patch, is de-
creased. Since the use of patch samples from a clean dataset,
with a given (but unknown) distribution, tends to have a large
variance, n has to be large in order to obtain a good approxi-
mation of E[x|y], as reported in [9]. Aiming at reducing the
sample size in (3)), some authors use only a subset of & clean
patches that are the most similar to the noisy patch [S]. How-
ever, because this approach compares a noisy patch with clean
patches, this subset is not guaranteed to contain a proper set
of similar and correlated patches.

In this paper, the large sample size hurdle is alleviated by
sampling from clusters of clean patches obtained from class-
specific datasets. The obtained clusters, based on GG den-
sities, have low intra-cluster variance, which is equivalent to
strong correlation among the samples in a given cluster.

3. PROPOSED METHOD

3.1. Learning patch priors

Learning image priors is an important step in many image de-
noising algorithms. In [7], a Markov random field is learned
from a set of natural images whose potentials are modelled
as a product of experts (PoE). In the EPLL approach [6]], a
mixture of multivariate Gaussians is learned from the clean
patches in an external dataset. In [3| [18} [19], a mixture of
Gaussians is learned from the patches of the noisy image. In
this work, we fit a set of M multivariate GG densities to a set
of clean patches of the class-specific external dataset. The GG
density with parameters © = {p, 33, 8} has the form [20]

p
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where § > 0 is the shape parameter, I'(.) represents the
Gamma function, and g and 3 are the mean vector and the
covariance matrix, respectively.

We take the following iterative procedure, after some ini-
tialization, and until some stopping criterion is satisfied:

1. cluster the clean patches using the maximum likelihood
(ML) criterion

mj = argmax pX(xj|é)m)7
me{l,....M}

where ©,, is the current estimate of the parameter vec-
tor of the m-th cluster;

2. update the parameter estimates

ém = arg max H Px (Xj ‘em),

(C] P
mo jimi=m

form =1,..., M, using the method presented in [20].

Notice that, although the above learning procedure might
have some computational complexity, it needs to be applied
just once, for a given class-specific image dataset.

3.2. Image denoising

In order to denoise the degraded image, each noisy patch is
assigned to one of the distributions learned from the external
dataset by computing

i = arg max py (ym), 5)

where py (y|m) is the density of y = x + n, under the prior
px (X; (:)m) If the cluster densities of the clean patches were
Gaussian, then py (-|m) ~ N (g, Em + o*I) [6]. However,
since we are using GG densities, the densities py (y|m) do not
have a simple expression, making it impractical to compute
the ML assignments (3). At this point, we take a pragmatic
decision: we fit Gaussian densities to the clusters, and classify
each noisy patch into one of the clusters via ML using these
Gaussian approximations. Compared with GG densities, the
Gaussian densities are a weaker fit; we remark, however, that
they are used only for assigning the noisy patches to clusters,
not in the clustering procedure itself, neither for computing
the final patch estimates.

After determining the patch distribution, the MMSE patch
estimates are obtained via sampling according to (). Al-
though it is possible to sample efficiently from a GG density
[20], we follow an alternative approach: we use as samples in
(I) a set of randomly chosen clean patches from the cluster of
clean patches to which it is assigned as explained in the previ-
ous paragraph. In this way, we are sampling from the underly-
ing patch distribution, rather than from any fitted parametric
density. As already mentioned, the reason for clustering is
to reduce the variance of the samples used in the importance
sampling formula.

3.3. More improvements

Although the importance sampling viewpoint for the formula
in () brings flexibility to the estimation of the clean patches,
it also has well known shortcomings. One of them is the large
variation of the importance weights w;’s, which is associated
with samples of very low representativity; this shortcoming is
known as degeneracy of the weights [21]. In order to alleviate
it, we use the method recently proposed in [22], which sim-
ply applies the hard thresholding operator on the importance
weights w;’s before computing the sums in (T). This prevents
the samples with low values of w; to contribute to the esti-
mate X;, and, thus, reduces the variance of the weights.

Finally, the patches are returned the original position in
the image and averaged in the overlapped pixels to recon-
struct the whole image. In order to further improve the al-
gorithm performance, in the denoising step, we implement
two iterations of our algorithm with a boosted image as an
input of the second iteration. Boosting is a known strategy,
which brings back the image details missing after the first
step of denoising and that has been often used in image de-
noising (e.g., [23l 24]). In this strategy, denoting the image
obtained in the first stage by X(1), the boosted image is ob-
tained by YV = XM 4 (Y — X1), where r < 1isa
constant. The noise level for the second iteration is computed
as 03 = 02 — 35 [|[YW — XD||2, which is exactly the same
formula used in [24]] for the same purpose.

4. EXPERIMENTAL RESULTS

In this section, we compare the proposed method with other
internal and external image denoising methods for text and
face images. We take BM3D as benchmark for internal image
denoising methods. For a fair comparison, EPLL is trained
with image datasets from the same class, and it is here called
class-adapted EPLL. We also consider the state-of-the-art de-
noiser proposed by Luo et. al [11], which was specifically
designed for class-specific datasets. To compare with meth-
ods using the non-parametric formula (I, we consider the
external non-local means denoiser [[11]].

Regarding the setting of the parameters, in the prior learn-
ing step, the initialization is obtained by the k-means algo-
rithm with 20 clusters. The parameter S in GG was empiri-
cally set to 0.9. The number of patch samples used in (3) was
set to n = 500. The threshold for the importance weights was
setto 5 x 10760,

The Gore face image dataset [25] was used as the face
image dataset. For the text dataset, we extracted images from
the different parts of a text document with different font sizes.
This way, we considered both high quality (low variance) and
low-quality (high variance) image datasets. In all the experi-
ments, 5 images of the respective dataset were randomly se-
lected for test and the remaining ones for training. Each test
image was contaminated with white additive Gaussian noise,



Table 1: Denoising results (average PSNR over 5 test images) for the Gore face dataset [25]] and the text dataset.

o=20 oc=30 o =40 o =50

face text face text face text face text

BM3D 31.88 | 28.13 | 29.64 | 24.95 | 27.57 | 22.55 | 26.98 | 20.91
EPLL (generic) 31.66 | 28.15 | 29.43 | 25.21 | 27.74 | 23.15 | 26.58 | 21.72

Class adapted EPLL 32.34 | 29.23 | 30.16 | 26.39 | 28.49 | 24.40 | 27.28 | 23.01
External Non-local means 31.81 | 25.93 | 30.08 | 25.27 | 28.75 | 23.90 | 27.48 | 22.50
Luo et. al. [11] 3298 | 27.52 | 30.89 | 27.44 | 29.24 | 26.29 | 28.01 | 25.02
Proposed method (Gaussian) | 32.63 | 30.12 | 30.79 | 27.81 | 29.11 | 26.41 | 27.75 | 25.22
Proposed method (GG) 33.09 | 30.93 | 30.99 | 28.20 | 29.48 | 26.75 | 28.08 | 25.79
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Fig. 1: An example of Denoising for a face image in the
Gore dataset (o = 30): (a) BM3D (PSNR=29.46) (b) EPLL
(PSNR=28.97) (c) Class specific EPLL (PSNR=29.91);
(d) External non-local means (PSNR=31.97) (e) Luo
et. al. (PSNR=32.20) [11]]; This work (PSNR=33.02).

and then denoised using the methods described before. Table
[[reports average PSNR over the five restored images.

From those results we may extract three conclusions: a)
the proposed method outperforms the competitors, although
the advantage over the denoiser in is small for face; b)
the clustering using GG prior yields better denoising results
than the Gaussian one; c¢) considering our method in the mul-
tivariate Gaussian case, the approximate solution to the exact
distribution (our method) performs better than the exact solu-
tion to the approximate fitted distribution (EPLL method).

Two examples of denoised images in the mentioned two
experiments are shown in Fig. [T|and Fig. 2]
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Fig. 2: An example of Denoising for a part of text image
(a) Noisy (¢ = 60) (b) BM3D (PSNR=20.14) (c) Class
specific EPLL. (PSNR=20.85); (d) External non-local means
(PSNR=21.79) (e) Luo et. al. (PSNR=24.12) [11]}; This work
(PSNR=25.44).

5. CONCLUSION

In this paper, we propose importance sampling to approxi-
mate the MMSE estimates of clean patches in which the sam-
ples are drawn from datasets of clean images from the same
class. The clean patches were clustered under the assump-
tion that each cluster follows a generalized Gaussian distri-
bution. The experimental results provide evidence that our
method outperforms the state-of-the-art denoisers based on
class-specific datasets. Considering other priors for image
patch clustering, using the importance sampling for generic
images or other noise distributions, and applying other im-
provements for importance sampling are subjects for future
works.
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