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ABSTRACT

Image tagging is a well known challenge in image pro-
cessing. It is typically addressed through multi-instance
multi-label (MIML) classification methodologies. Convolu-
tional Neural Networks (CNNs) possess great potential to
perform well on MIML tasks, since multi-level convolution
and max pooling coincide with the multi-instance setting and
the sharing of hidden representation may benefit multi-label
modeling. However, CNNs usually require a large amount
of carefully labeled data for training, which is hard to ob-
tain in many real applications. In this paper, we propose a
new approach for transferring pre-trained deep networks such
as VGG16 on Imagenet to small MIML tasks. We extract
features from each group of the network layers and apply
multiple binary classifiers to them for multi-label prediction.
Moreover, we adopt an L1-norm regularized Logistic Regres-
sion (L1LR) to find the most effective features for learning
the multi-label classifiers. The experiment results on two
most-widely used and relatively small benchmark MIML
image datasets demonstrate that the proposed approach can
substantially outperform the state-of-the-art algorithms, in
terms of all popular performance metrics.

Index Terms— CNN, Multi-instance, Multi-label, Small
dataset, Transfer Learning

1. INTRODUCTION AND RELATED WORK

Abstracting meaningful visual information from images into
semantics is one of the popular research areas in image pro-
cessing, namely, feature extraction. A fundamental but un-
solved problem is how to automatically generate text inter-
pretation or description of images, an ultimate goal of im-
age understanding. Publicly accessible images are usually
posted for transmitting information, so each of them is likely
worth many (if not a thousand) words. If some of these words
are treated as labels, then the prediction of them becomes a
multi-label learning problem. Meanwhile, each image can be
viewed as a bag of local regions. If labels are assigned to a
whole image but not its specific regions, i.e. an image (bag)

∗Corresponding author. This work was supported by JSPS KAKENHI
Grant Number 15K16024 and the National Natural Science Foundation of
China Under Grant No.61373077.

Train

Image

Test

MIML
Classifier

Text

Labels

Horse
Tree
Grass

Labels

Horse
Building
Grass

Multi-Instance Multi-Label

Fig. 1: Multi-instance multi-label learning for image tagging.

label is positive if any of its regions (instances) has this pos-
itive label, the prediction of each image (bag) label is also
naturally a multi-instance learning problem. Therefore, the
so-called multi-instance multi-label (MIML) problem [1] is
in fact very common in real life and of great importance for
bridging images and text in multimedia researches. Figure 1
illustrates a general setting for automatic image tagging (an-
notation) in the MIML perspective1. Recently, Convolutional
Neural Networks (CNNs) have been successfully applied to
numerous computer vision tasks, such as face recognition [2],
image categorization [3], scene recognition [4], and semantic
segmentation [5]. These tasks are still essentially a multi-
class classification problem, where only a single label is as-
signed to a concerned input, not yet a MIML problem.

However, here we would like to promote CNNs further
that CNNs are in fact suitable for solving MIML problems.
Firstly, traditional algorithms solve multi-instance problems
by extracting a bag of instances from each image and then
applying multi-instance classifiers. The convolutional layers
of CNNs slide through an image (the bag) and create the can-
didate instances, and the max-pooling layers select the most
representative instances inside the bag. Secondly, traditional
algorithms solve multi-label problems by explicitly or implic-
itly building the relationship between the labels. In CNNs,
through utilizing a deep hierarchical structure, different levels
of representation of all the labels have already been embed-
ded in the network, and the relationship of the labels can be
explored via checking the sharing of the neurons, for exam-

1In some related work multi-instance learning also concerns instance-
level labeling, but in this paper we focus on bag-level labeling.
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Fig. 2: The framework of the learning algorithm. Source Task: Multi-class Classification (Image Classification), outputting one class label;
Target Task: MIML Recognition (Image Tagging), outputting multiple labels.

ple. Hence a simple way to adapt CNNs for solving MIML
problems would be to change the original multi-class classi-
fier in the Softmax Layer into a multi-label classifier, such as
the multiple binary-class logistic regression (LR).

Unfortunately, unlike multi-class classification datasets
such as Imagenet [3], most existing MIML datasets only have
a relatively small amount of training data, as the annotation
costs for them are generally much higher. Hence, it will be
hard to directly train an effective CNN model for such cases.

In this paper, we propose a way to transfer existing deep
CNN models to small MIML tasks. Based on the VGG 16
layers network (VGG16) [6] pre-trained on Imagenet, we ex-
tract features from each group of its layers, which enable a
depiction of the multi-level relationship between the labels.
Then an L1-norm regularized Logistic Regression (L1LR) is
adopted to learn one classifier for each label. The aim of uti-
lizing the sparsity regularization is to encourage the classifiers
to select only much smaller subsets of “effective” features for
specific labels. We shall use experiments on two most-widely
used small benchmark MIML image datasets to show that the
proposed approach, as well as its simpler version without L1

regularization, can substantially outperform the state-of-the-
art algorithms, in terms of all of the popular metrics for evalu-
ation of MIML classification, namely the Hamming loss, one
error, coverage, ranking loss and average precision [1].

2. TRANSFER LEARNING FOR MIML

To use a representative and concrete exemplar model to il-
lustrate the transferring of CNNs, in this paper we choose the
VGG16 net [6] trained on the multi-class classification task of
Imagenet. VGG16 is a widely-used simple yet powerful CNN
structure, enjoying good performance on Imagenet and many

successful transferring records. Imagenet has been proved to
be a great source for transferring as it has a wide coverage
(totally 1000) of common object categories and contains great
variations of them in its 1.3 million training images.

VGG16 has 13 convolutional layers and 3 Fully-Connected
(FC) layers. The 13 convolutional layers form 5 groups (2-
2-3-3-3) and at the end of each group one max-pooling layer
is utilized. During the training process, VGG16 learns fil-
ters/kernels, which would slide through each image at multi-
ple scales and generate nearly all possible instances (patches)
inside the bag (image). Max pooling, which would add po-
sition robustness, selects the most representative instances
inside the bag in fact. Therefore, the features learned via
CNNs are potentially suitable for multi-instance tasks.

Meanwhile, during the training process with Imagenet, a
larger number of labels have been simultaneously employed
to learn a representation network. The hierarchical struc-
ture of the network builds different levels of representation
of all the labels. Later layer filters, which are semantic
detectors [7, 8], are in fact closely related to the semantic de-
scription space of the labels [5, 9]. Earlier layer filters would
be more about the low level descriptions of the labels [10].
With the pre-trained network, different levels of semantic
relationship have already been captured by the network via
the sharing of neurons at different layers. Therefore, the fea-
tures learned via CNNs are also suitable for multi-label tasks
on small datasets. One widely adopted approach to transfer
learning is fine-tuning. However, an effective fine-tuning
usually also requires a large number of training instances [11]
or pixel-level strongly supervised information [5]. Hence, for
small MIML image tagging tasks, we introduce the following
transfer learning method.

According to the previous papers such as [12, 13, 14, 15],



Table 1: Performance comparison (mean ± std). The symbol ↑ (↓) indicates that the larger (smaller) the value, the better the performance.

VGG+L1LR VGG+LR MIMLfast DBA KISAR MIMLkNN MIMLSVM RankLSIM
MSRC v2
a.p. ↑ .933± .010 .851± .016 .688± .017 .326± .016 .666± .018 .591± .018 .685± .018 .687± .013
co. ↓ .102± .006 .140± .012 .238± .014 .837± .018 .254± .015 .312± .020 .256± .018 .239± .013
h.l. ↓ .033± .003 .051± .003 .100± .007 .140± .006 .086± .004 .131± .007 .084± .003 .110± .004
o.e. ↓ .060± .017 .149± .024 .295± .025 .415± .026 .341± .031 .440± .031 .320± .029 .302± .208
r.l. ↓ .018± .003 .045± .007 .108± .009 .675± .017 .131± .010 .165± .013 .125± .011 .107± .007

Scene
a.p. ↑ .948± .006 .926± .004 .770± .015 .600± .013 .772± .012 .757± .011 .750± .012 .738± .011
co. ↓ .082± .006 .096± .004 .207± .012 .334± .011 .204± .008 .222± .009 .225± .010 .237± .010
h.l. ↓ .070± .004 .090± .004 .188± .009 .269± .009 .194± .005 .196± .007 .200± .008 .204± .007
o.e. ↓ .082± .010 .114± .007 .351± .023 .386± .025 .351± .020 .370± .018 .380± .021 .392± .019
r.l. ↓ .038± .005 .055± .004 .189± .014 .348± .012 .185± .010 .207± .011 .212± .011 .222± .010

features from all the layers are useful for the final classifi-
cation. More precisely, they extract features from all layers
and then conduct 4-quadrant max-pooling for each filter of
the convolution layers. Similarly, we use 4-quadrant max-
pooling to extract features from the pooling layer after each
group of convolution layers, as illustrated in Figure 2. The
second, instead of the last, FC layer is adopted, because the
last layer may be too specific for the final tasks and the sec-
ond one may be better for transferring. The features from
pooling layers can represent instance-level information as the
convolutions can be regarded as extracting filter-specific fea-
tures for instances and the pooling is about selecting the most
representative instances. Differently, the FC layer mixes all
instances and generates a bag-level representation so it may
cover certain relationships between different instances. Both
the instance-level and bag-level representations are consid-
ered to be important for multi-instance (MI) learning under
both traditional MI assumption or its generalized assump-
tions [16]. The final features have a total dimension of 9984,
with 64×4, 128×4, 256×4, 512×4, 512×4, and 4096 for the
corresponding components, respectively.

A small MIML dataset usually contains few labels, which
may be related to only a small subset of the Imagenet classes.
Therefore, many of the pre-trained CNN filters may not be
relevant to the MIML problem. So intuitively it is natural to
conduct L1 regularization to obtain the effective subsets of
features for specific MIML tasks. Meanwhile, to carry out
multi-label classification, we replace the original classifier of
multi-class LR (in the Soft-max Layer, which would encour-
age the classifier to output a single class label) with multiple
binary LR classifiers (each corresponds to a label). There-
fore, the optimization problem to learn the j-th classifier can
be expressed as

min
wj

1

m

m∑
i=1

log(1 + exp(−yij(xT
i wj + b))) + λ|wj |1 (1)

where xi ∈ RF represents the extracted features of the ith

instance; wj ∈ RF denotes the LR parameters for label j; b
is the intercept; yij ∈ {−1, 1} indicates the multi-label su-
pervised information, where yij = 1 (or −1) if the ith in-
stance has label j (or not); m denotes the number of training
instances; and λ is the shrinkage parameter. This simple clas-
sification model implicitly takes multi-instance learning into
account, given that the CNN features extracted and employed
have already embedded MIML information, as explained.

3. EXPERIMENTS

3.1. Setting

We use VGG+L1LR (VGG+LR) to represent the transfer-
ring algorithm adopting the features extracted from VGG16
and then using L1LR (LR) to do multi-label classification.
VGG+L1LR and VGG+LR are compared with other six
state-of-the-art MIML methods, namely MIMLfast [17],
DBA [18], KISAR [19], MIMLkNN [20], MIMLSVM [21]
and RankLSIM [22].

The experiments are conducted on two popular and rel-
atively small benchmark datasets: MSRC v2 [23], a subset
of the Microsoft Research Cambridge (MSRC) image dataset
with 591 images and 23 labels (on average 2.5 labels per im-
age), and Scene [21], a natural scene dataset with 2000 im-
ages and 5 different labels (on average 1.2 labels per image).

The VGG features are extracted via Caffe [24]; LR and
L1LR are implemented via Liblinear [25]. The shrinkage pa-
rameter λ of L1LR is fixed as default of 1. The performance
of those state-of-the-art algorithms are based on [17], which
adopts cross validation to select suitable values for the param-
eters of the algorithms. For each dataset, 2/3 of the instances
are randomly selected to train the classifiers and the remain-
ing 1/3 instances are taken as the test instances. We repeat
the random data partition for 30 times, and report the average
results over the 30 repetition.

The performance evaluation of multi-label algorithms is
more complex than that of multi-class ones. We choose five
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Fig. 3: The performance with a relatively small number of training instances. The red line indicates the best performance of the 6 state-of-
the-art algorithms with 2/3 training instances (394 training instances on MSRC dataset on the upper 5 panels, and 1333 training instances on
Scene dataset on the lower 5 panels). The performance is based on 30 random repetition and the bar indicates the standard deviation.

frequently adopted metrics [1] for evaluation as follows.

• Average Precision (a.p.): the average fraction of labels
ranked above a particular label y ∈ Y which are actu-
ally in Y ;

• Coverage (co.): how far we need, on average, to go
down the list of labels in order to cover all the proper
labels of the instance2;

• Hamming Loss (h.l.): the percentage of instance-label
pairs which are misclassified;

• One Error (o.e.): the average number of the top-ranked
label predicted but not a label of the instance;

• Ranking Loss (r.l.): the average fraction of label pairs
that are reversely ordered for the instance.

3.2. Results

Firstly, as illustrated in Table 1, it is clearly that both VGG+L1LR
and VGG+LR outperform the 6 state-of-the-art algorithms
remarkably, which proves the proposed VGG-based transfer
learning framework is suitable for MIML problems and could
perform well even with a small number of training instances
(394 on the dataset of MSRC and 1333 on the dataset of
Scene). In terms of average precision, which is the higher
the better, the VGG-based algorithms perform at least 0.16
and 0.15 better on the two datasets respectively. In terms of
the other four metrics, namely coverage, hamming loss, one
error and ranking loss, the VGG-based algorithms are at least
0.098, 0.033, 0.146, 0.062 smaller than the state-of-the-art
algorithms on the dataset of MSRC and 0.111, 0.098, 0.237,
0.130 smaller on the dataset of Scene. The experiment results

2In this paper, the reported coverage is normalized by the number of labels
such that all criteria are in the interval of [0, 1].

on these two datasets indicate that the proposed algorithms,
which are based on transferring VGG, enjoy at least 21.8%,
41.1%, 33%, 49.4% and 57.4% performance improvement
on the five metrics, respectively.

Secondly, after comparing VGG+L1LR against VGG+LR,
the sparsity regularization also has shown noticeable positive
effect. On the dataset of MSRC, we can see 0.082(9.6%),
0.038(27.1%), 0.018(35.29%), 0.089(59.7%) and 0.027(60%)
improvement on the five metrics, respectively. Similarly,
0.022(2.4%), 0.014(14.6%), 0.020(22.2%), 0.032(28.1%)
and 0.027(30.9%) improvement is observed on the dataset
of Scene. The results verify the effectiveness of sparsity
regularization.

Finally, the performance of the algorithms with even
smaller numbers of training instances is illustrated via Fig-
ure 3. We can see that adding L1 regularization always
produces better performance when the number of training
instances is relatively small. On the dataset of MSRC, when
comparing against the state-of-the-art algorithms, we can ob-
serve that, with only 200 training instances, VGG+L1LR can
perform better than the state-of-the-art algorithms with 394
training instances, in terms of all five metrics. Even more
striking, on the dataset of Scene, it is clearly that with only
30 training instances, L1LR could get better performance
than the state-of-the-art algorithms with 1333 training in-
stances. These results verify that the proposal also works
with a relatively small number of training instances.

4. CONCLUSION

In this paper, for multi-instance multi-label problems with
small datasets, we propose a CNN-based transfer learning
framework with sparsity regularization. The proposal has
achieved substantial improvement in classification perfor-
mance when compared with six state-of-the-art algorithms.



5. REFERENCES

[1] Zhi-Hua Zhou, Min-Ling Zhang, Sheng-Jun Huang, and Yu-
Feng Li, “Multi-instance multi-label learning,” Artificial Intel-
ligence, vol. 176, no. 1, pp. 2291–2320, 2012.

[2] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior
Wolf, “Deepface: Closing the gap to human-level performance
in face verification,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2014, pp. 1701–
1708.

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Ima-
genet classification with deep convolutional neural networks,”
in Advances in neural information processing systems, 2012,
pp. 1097–1105.

[4] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Tor-
ralba, and Aude Oliva, “Learning deep features for scene
recognition using places database,” in Advances in neural in-
formation processing systems, 2014, pp. 487–495.

[5] Jonathan Long, Evan Shelhamer, and Trevor Darrell, “Fully
convolutional networks for semantic segmentation,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 2015, pp. 3431–3440.

[6] Karen Simonyan and Andrew Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,” arXiv
preprint arXiv:1409.1556, 2014.

[7] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and
Antonio Torralba, “Object detectors emerge in deep scene
CNNs,” arXiv preprint arXiv:1412.6856, 2014.
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