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ABSTRACT

In this paper, a shape-constrained iterative algorithm is pro-

posed to register a rigid template point-cloud to a given

reference point-cloud. The algorithm embeds a shape-based

similarity constraint into the principle of gravitation. The

shape-constrained gravitation, as induced by the reference,

controls the movement of the template such that at each iter-

ation, the template better aligns with the reference in terms

of shape. This constraint enables the alignment in difficult

conditions indtroduced by change (presence of outliers and/or

missing parts), translation, rotation and scaling. We discuss

efficient implementation techniques with least manual inter-

vention. The registration is shown to be useful for change

detection in the 3D point-cloud. The algorithm is compared

with three state-of-the-art registration approaches. The ex-

periments are done on both synthetic and real-world data.

The proposed algorithm is shown to perform better in the

presence of big rotation, structured and unstructured outliers

and missing data.

Index Terms— Point cloud registration, Shape registra-

tion, gravitational approach, change detection

1. INTRODUCTION

With the increasing availability of 3D data acquisition de-

vices such as Kinect [1], [2], the researchers are inclining

towards exploiting the 3D information for a variety of pro-

cesses. Registration of 3D point-clouds is a necessary initial

step for many such processes. Examples include change de-

tection in a scene, industrial quality control, pose tracking [3]

etc. Generally, two point-clouds (called reference and tem-

plate respectively) of an object or scene are captured at two

time instances, possibly from different camera positions. The

scene may have gone under some changes during this time.

The registration refers to the process of translating, rotating

and scaling the template such that it optimally aligns with the

reference. In this paper, we focus on the automatic rigid reg-

istration of 3D point-clouds. The proposed algorithm does

not require any color, texture, point correspondence or point

topology information of the point-clouds. Moreover, presence

of noise, outlilers and missing parts make the problem even

more challenging. Now, we briefly review the related literatue

and state our contributions (Fig. 1).

One of the earliest and most popular method for rigid
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Fig. 1. Example comparing the registration results of the pro-

posed method vs. that of GA [4]. The frontal view of the

bunny data shows that the lower body part is heavier com-

pared to the head. In GA, the heavier parts of the template

(green) get attracted more by the reference (red), irrespec-

tive of shape, resulting in misalignment (first row). In our

method, the parts of the template get attracted by the parts of

the reference having similar shape. This gives better align-

ment (white) even in presence of large rotation. In the exam-

ple, the template is given a 50◦ of rotation wrt the x-axis.

point set registration is Iterative Closest Point (ICP) [5], [6].

Using non-linear optimization algorithm, ICP minimizes the

mean squared distances between the two point sets. Though

this method is simple to implement, it is sensitive to out-

liers and the performance depends on the initial alignment

[4]. Some variants [7], [8] of ICP are also there.

While ICP [5] assigns discrete correspondences between

the points of the two sets, later methods such as Robust Point

Matching (RPM) [9] and [10], [11], [12] assign soft corre-

spondences. A set of methods [13], [14] treat the registration

problem as maximum likelyhood estimation problem where

the template points are assumed to be the centroids of Gaus-

sian Mixture Model (GMM) and the reference points are seen

as data points. Expectation-Maximization (EM) algorithm is

generally used for optimization of likelyhood function. A

closed form solution to the M-step of the EM algorithm for

multidimensional case is proposed in [15]. Their method is

called Coherent Point Drift (CPD). The GMM based meth-

http://arxiv.org/abs/1902.01061v1
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Fig. 2. Example comparing iterative alignment results of the

proposed registration method with that of GA [4]. The white

point cloud shows the registraion result. The proposed algo-

rithm reaches local minima very fast (20 vs. 105 iterations in

the second column). Near local minima, our approach takes

smaller steps while GA overshoots (third to fourth columns).

ods perform better in the presence of noise. CPD was re-

fined in [16] and [17] for structured outliers. Other recent

mentionable approaches are [18], [19] and [20]. Recently in

2016, a new Gravitational Approach (GA) based registration

algorithm is proposed [4]. Under GA algorithm, the tem-

plate moves towards the reference under the influence of grav-

itaional force as induced by the reference. GA based method

is shown to perform better compared to CPD under more than

50% uniform noise. The performance of GA decreases with

increasing rotation (more than 45o) and change (extra or miss-

ing parts) [4]. We propose substantial modifications to the GA

algorithm [4] to overcome the disadvantages of GA.

Our contributions are as follows. (1) GA method mini-

mizes the distance between the center-of-masses of the two

point-clouds but does not ensure proper shape alignment (see

Fig. 1). We constrain the force of attraction with a mea-

surement of local shape-similary for better alignment of the

shapes (i.e., handles rotation and outliers better). (2) In GA,

the force of attraction is inversely proportional to the distance

beetween the two points involved. As a result, the increased

speed at local minima (where the distance is small) does not

allow the algorithm to converge (see Fig. 2). To handle this

situation, a number of free parameters are introduced in GA.

In our algorithm, the force of attraction is proportional to a

monotonically increasing function of distance. This modifica-

tion allows for better convergence without the need for extra

free parameters. (3) GA has limited capability to handle scale

change [4]. In our method, to handle scale change, an orienta-

tion and translation invariant model is proposed that uses the

spatial point distribution of the two point-clouds. (4) The new

algorithm is evaluated extensively for fully automatic perfor-

mance as opposed to a number of (seven) free, manually ad-

justed parameters of GA method [4].

The proposed algorithm is compared with ICP [5], CPD

[15] and GA [4] in Section 5 and the conclusions are drawn

in Section 6. Next, we briefly present the GA based regis-

tration method following which we elaborate the proposed

shape-constrained registration algorithm.

2. GRAVITATIONAL APPROACH

In Gravitational Approach (GA) based registration, each point

in one point set (called reference) attracts each point in the

other point set (called template). The force of attraction is

governed by the following formula.

f
Y i = −GmY i

N
∑

j=1

mXj

(‖rY i − rXj‖2 + ǫ2)3/2
nij−ηvY i (1)

In (1) G is the gravitational constant and fY i represents the to-

tal force applied on a point Y i of the template. The symbols

Xj, mXj , rXj and N rerpesent the jth point in the reference,

mass of Xj, absolute coordinates of Xj and number of points

in the reference respectively. The symbols nij , vY i and η rep-

resent a unit vector in the direction of force, the velocity of

Y i in the previous iteration and a constant respectively. The

template, as a rigid body, gets displaced in an iterative way

under the influence of the cumulative force induced by all the

points in the reference. The term ǫ2 does not allow the force

to increase beyond a certain small distance between the refer-

ence and the template (note that fY i ∝ 1/(
∥

∥rY i − rXj
∥

∥

2

)).
The term −ηvY i in (1) acts as friction that controls the ve-

locity near local minima. Given the force, the displacement

of the template is estimated ollowing Newton’s second law

of motion. The scale and rotation, required for registration,

are estimated using the new positions of the template points

which are estimated following (1).

3. THE PROPOSED REGISTRATION APPROACH

The objective of the gravitational force is to minimize the dis-

tance between the center of mass of the two objects. On the

other hand, the objective of registration is to align the two

objects (point-clouds here) such that the parts of the objects

having similar shapes map to each other. Therefore, we need

to modifiy the principles of gravitation to accommodate this

constraint. We explain these modifications next.

3.1. Modified Gravitational Approach

In GA, fY i ∝ mXjmY i. As a result, in registration following

(1), the heavier parts of the point-clouds attract each other

more irrespective of the shape, resulting in mis-alignment

(e.g., Fig. 1). Therefore, we modify (1) such that,

f
Y i ∝ g(sXj,Y i), (2)

where sXj,Y i represents a measure of shape similarity of local

neighborboods centered at Xj and Y i respectively. g is a

monotonically increasing function of s. We have evaluated

different features (e.g., histogram of normals, coefficients of

polynomial approximating the local surface, curvature) that

can represent shape in spatially local domain. The curvature



[21] seems to be the best representative of local shape. As a

similarity measure of shape, any radial basis function (RBF)

can be used where the output decreases monotonically as the

dissimilarity increases. In our implementation, we used

sXj,Y i = exp(−|aXj − aY i|2
σ2

), (3)

where, |.| represents absolute value, σ and aXj represent the

spread of the RBF funtion and the curvatue value of the neigh-

borhood centered at Xj. In the proposed registration ap-

proach, we want the template to make large movement if the

distance between the template and the reference is large. We

want it to take tiny steps for finetuning when close to align-

ment. This is ensured by the following formula.

f
Y i ∝ h(

∥

∥rY i − rXj
∥

∥). (4)

The value of the function g in (2) or the function h in (4) can

be the value of the argument itself or some suitable mono-

tonically increasing function as we shall discuss in Section 4.

Therefore, we propose the following formula to estimate the

total force applied on a point Y i of the template.

f
Y i = −G

N
∑

j=1

g(sXj,Y i)h(
∥

∥rY i − rXj
∥

∥)nij . (5)

Note that in (5) we could drop two free parameters ǫ and η as

used in (1) in GA based registration [4].

3.2. Estimating Translation, Rotation and Scale

We estimate the displacement represented by say, d of the

template following Newton’s second law of motion.

d = (
f

mX
time+ vX)× time. (6)

In (6) f , mX and vX represent the total force (
∑M

i f
Y i) ap-

plied on the template X , mass of X and velocity of X in a

previous iteration repsectively.

The rotation matrix R is estimates following Kabsch algo-

rithm [22]. Let Y and YD represent the mean subtracted M ×
3 matrices representing the M coordinates of the template be-

fore and after translation following (6). Let Ĉ = Y T
D Y rep-

resent the corss-covariance matrix. The rotation matrix R is

estimated using Singular Value Decomposition (SVD) of Ĉ.

After SVD Ĉ = Û ŜV̂ T and let d = sign(det(V̂ ÛT )). Then,

R = V̂





1 0 0
0 1 0
0 0 d



 ÛT . (7)

In GA, the scale is estimated as the ratio of the positions

estiamted using (1) and previous positions of the template

cloud points. Any error occuring in estimating the translation

using (1) gets propagated to estimating the scale at each iter-

ation of GA based registration. Our model does not depend

on the estimation of translation. We find the eigen valules of

the covariance matrix (say C) of each of the two point-clouds.

The largest eigen-value represents a measure of the lengh of

the point-cloud distribution in the direction of the largest vari-

ance.This measurement is independent of the orientation or

relative position of the two point-clouds. Using SVD we have

C = USV T where the diagonal elements of S represent the

eigen values and U and V are orthogonal matrices. We esti-

mate the scale as c = eX
eY where eX and eY are the largest

eigen values of the reference and the template respectively.

(see Supplementary Fig. S1). We scale the template (Y ) as.

Y ′ = V diag(c)V TY T (t). (8)

In (8), t stands for iteration number and diag(c) represents a

square matrix with c in the diagonal and zeros elsewhere. In

each iteration of our algorithm, the template is updated using

Y (t+ 1) = Y ′R + µ+ d. (9)

In (9) µ is a M×3 matrix where each row represents the mean

position of the template.

4. IMPLEMENTATION DETAILS AND DISCUSSION

The value of shape similarity g(sXj,Y i) is the main factor

controlling the translation and rotation of the template. If

we give equal weightage to all the local shapes then we set

g(sXj,Y i) = sXj,Y i. In indoor and some ourdoor scenes,

non-planar local shapes play vital role in registration com-

pared to planar shape. Therefore, we can set g as follows to

give more weightage to non-planar local shapes.

g(sXj,Y i) = aXjaY isXj,Y i. (10)

For finding the curvature (a), setting the radius of the local

neighborhood to
√
eX and

√
eY respectively yields good re-

sults. We design h of (4) as follows.

h(
∥

∥rY i − rXj
∥

∥) = h(
∥

∥rY i − rXj
∥

∥

p
),where p ≥ 1. (11)

Higher value of p results in greater speed but oscillation about

the local minimal. Lower value of p results in better registra-

tion but makes the process slow. The mass m of every point is

assumed to be 1 and vX is set to 0. m and vX can be modified

depending on prior information, if any. We also suggest that

G of (5) should take larger value near convergence when the

algorithm takes smaller steps. We modify G as follows.

G(t+1) = 0.1×G1+0.9×G1/(1+exp[−{t−E/2}]) (12)

where, we set G1 = 10000 and E = 400 is the number of

iterations. For noisy real scenarios, pyramidal approach can

be taken where the size of the local neighborhood and σ of

(3) decreases with iteration (Supplementary Fig. S2).

5. EVALUATION

On Synthesic data: We evaluate the performance of the pro-

posed method on data with different amounts and types of



noise (structured and unstructured outliers, missing data). In

Fig. 3 we compare our method with GA [4] in the presence

of structured outliers. When the mass (no. of points) in the

outlier is less than the reference (human scan), both the meth-

ods work well (Fig. 3, col 1). As the mass of the outlier

increases, following GA, the outlier rather than the human

shape moves towards the reference (Fig. 3, col 2, 3). Follow-

ing our method, regardless of the mass of the outlier, the hu-

man shape (downloaded from [23] [24]) in the template reg-

isters with the human shape in the reference. Here come into

light the advantage of our method over GA [4]. Unlike GA

where the movement of the template depends on the mass, in

our method the movment depends on the shape.

Fig. 4 shows the performance of the proposed method on

data with missing points. We delete 18% consecutive points

from the head of the Armadillo [25] data. For both the cases

when the full Armadillo or the one with missing points is used

as the template and the other one as the template, our method

gives desired result (Fig. 4) whereas the competing methods

give less accurate results (Supplementary Fig. S3).

Fig. 4c and d show the results when 50% Gausian and

Uniform outliers respectively are added to the data. To quan-

titatively compare the proposed approach with that of GA

[4], CPD [15] and ICP [5], we follow the same evalutaion

protocol as used in [4] and use the same bunny point cloud

from Stanford 3D Scanning Repository [25] as used in [4]

and [15] . We add 5%, 10%, 20%, 40% and 50% Gaus-

sian and uniform noise to the template. For each of the 10

noise type-percentage combinations, 500 random tranforma-

tions are applied on the point cloud to form the template. The

non-transformed point-cloud acts as the reference. Fig. 5

compares the the amout of noise vs. Root Mean Square Er-

ror (RMSE) for the four competing methods. All the meth-

ods perform better for Gaussian compared to uniform noise.

Overall CPD [15] performs better compared to ICP [5]. Our

method outperforms all the three competing methods.

On Real Data: To evaluate the proposed method in real

scenarios, we capture 3D point-cloud scans of a number of

scenes, two captures for each scene using Kinect. Fig. 6

demonstrates one example. In the second capture, the position

of the remote-controller has been changed and the front box

has been opened. To make the problem even more difficult,

we translate the template by 0.2 meters along x-axis. The reg-

istration result shows propoer alighment with the front box,

cup and the background box. Notice the cover of the front

box and the remote-controller have not been aligned with any-

thing as the postion of these items have been changed in the

second capture. Thus, the proposed registration approach can

be used for change detection in real scenes.

6. CONCLUSIONS

We have proposed a novel rigid point-set registration al-

gorithm with special characteristics (e.g., shape constraint,

translation proportional to distance, spatial point-set dis-

Registration following GA based method

Registration following our method

Outlier = 0.5 × reference Outlier = reference Outlier = 2.0 × reference

Outlier = 0.5 × reference Outlier = reference Outlier = 2.0 × reference

Fig. 3. Comparison of our method with GA [4] in the pres-

ence of structured outlier. With increasing mass of the outlier,

the registration performance following GA degrades whereas

our method consistently performs well. Red: reference,

green: template, white: template after registraion.

(a) (b) (c) (d)

Fig. 4. Registration results of our method on point-clouds

with 18% deleted points (a, b) and 50% outliers (c, d). In (a),

(b), (c) and (d), the partial cloud, original full cloud, cloud

with Gaussian outlier and Uniform outlier respectively are

used as the template.
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Fig. 5. Comparison of the proposed method with GA [4], ICP

[5] and CPD [15] in the presence of unstructured outliers.
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Fig. 6. Registration result on real scene.

tribution model for handling scale) that outperforms other

competing approaches [4], [15] and [5]. The proposed ap-

proach registers better in difficult conditions such as missing

object part, rotation more than 50o and different amounts of

structured and unstructured outliers. We plan to employ the

proposed registration approach for efficient change detection.
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