Inter-camera tracking based on fully unsupervised online learning | IEEE Conference Publication | IEEE Xplore

Inter-camera tracking based on fully unsupervised online learning


Abstract:

In this paper, we present a novel fully automatic approach to track the same human across multiple disjoint cameras. Our framework includes a two-phase feature extractor ...Show More

Abstract:

In this paper, we present a novel fully automatic approach to track the same human across multiple disjoint cameras. Our framework includes a two-phase feature extractor and an online-learning-based camera link model estimation. We introduce an effective and robust integration of appearance and context features. Couples are detected automatically, and the couple feature is also integrated with appearance features effectively. The proposed algorithm is scalable with the use of a fully unsupervised online learning framework. In the experiments, it outperforms all the state-of-the-art methods on the benchmark NLPR_MCT dataset.
Date of Conference: 17-20 September 2017
Date Added to IEEE Xplore: 22 February 2018
ISBN Information:
Electronic ISSN: 2381-8549
Conference Location: Beijing, China

Contact IEEE to Subscribe

References

References is not available for this document.