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ABSTRACT

A learning-based framework for representation of domain-
specific images is proposed where joint compression and de-
noising can be done using a VQ-based multi-layer network.
While it learns to compress the images from a training set,
the compression performance is very well generalized on im-
ages from a test set. Moreover, when fed with noisy versions
of the test set, since it has priors from clean images, the net-
work also efficiently denoises the test images during the re-
construction. The proposed framework is a regularized ver-
sion of the Residual Quantization (RQ) where at each stage,
the quantization error from the previous stage is further quan-
tized. Instead of codebook learning from the k-means which
over-trains for high-dimensional vectors, we show that only
generating the codewords from a random, but properly regu-
larized distribution suffices to compress the images globally
and without the need to resort to patch-based division of im-
ages. The experiments are done on the CroppedYale-B set
of facial images and the method is compared with the JPEG-
2000 codec for compression and BM3D for denoising, show-
ing promising results.

Index Terms— dictionary learning, image compression,
learning to compress, Vector Quantization, image denoising

1. INTRODUCTION

Consider the classical image processing tasks like image com-
pression and denoising. While there exists a wealth of suc-
cessful methods to address them, the specificity and the in-
tricate optimization in their design hinders their application
to more general tasks and setups. For example suppose in-
stead of one single image, we are given a collection of similar-
looking images. Can the standard image compression codecs
benefit from the shared redundancy to compress the images
further? Such a setup is of great practical importance for
compression of facial or iris images in biometrics, medical
images, or the compression and transmission of very large,
but similar-looking images in remote sensing and astronomy.
In these cases, the usage of generic codecs like JPEG-2000
whose basis vectors are not adapted to the statistics of images
is known to be inefficient.

Take the case of facial images. Inspite of the exten-
sive litereture in generic image compression, only several
learning-based algorithms have studied the compression of
facial images. For example, [1] was an early attempt based
on VQ. [2] learns the dictionaries based on the K-SVD [3]
while [4] uses a tree-based wavelet transform. [5] proposes
a codec by using the Iteration Tuned and Aligned Dictionary
(ITAD). In spite of their high compression performance, the
problem with most of these approaches is that they rely very
much on the alignment of images and they are less likely to
generalize once the imaging setup is changed a bit. Some of
them require the detection of facial features (sometimes man-
ually) and then alignment by geometrical transformation into
some canonical form and also a background removal stage.

Similarly for the image denoising tasks, only few meth-
ods have benefited from external clean databases of similar
images. For example, [6] reports a near 1dB improvement
over the BM3D.

On the other hand, one can think of different tasks to
be performed jointly. Can more favorable scenarios like the
availability of a collection of similar domain-specific images
help to compress and denoise images at the same time? As
a practical scenario, suppose for example the case where in
an object identification system, several exemplar images have
been taken with high-quality acquisition systems in the en-
rollment mode. At query time, however, only low-quality and
noisy cameras are available. It is highly desirable to be able
to jointly denoise and compress the acquisitions.

The rest of the paper is organized as follows. In section
2, a very brief overview of the general image representation
formulation is considered where several relevant cases are
quickly reviewed. Section 3 preludes with a review from a
problem in rate-distortion theory, namely the reverse water-
filling paradigm. This will be used as the core concept behind
the proposed Regularized Residual Quantization (RRQ) in-
troduced next. Section 4 conducts experiments on the RRQ
algorithm under the image compression and denoising tasks.
Finally, section 5 concludes the paper.
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2. RELATED WORK

Many methods for image representation and dictionary learn-
ing can be generalized in the inverse-problem formulation of
Eq. 1, where X contains the data-points (e.g., image patches)
x(i)’s in its columns. The codebook and the codes can be rep-
resented in a matrix form as C = [c1, · · · , ck, · · · , cK ]1 and
A = [α1, · · · ,αi, · · · ,αN ], respectively, with 1 6 i 6 N
and 1 6 k 6 K.

minimize
C,A

||X− CA||2F .

s.t. ΩC,ΩA

(1)

ΩC and ΩA are a set of constraints on the construction of the
codebook and the codes, respectively.

Depending on ΩC and ΩA, the problem of Eq. 1 can be
treated in many different ways.2 For example, under the fa-
mous sparsity constraint Ω`0A : ||α(i)||0 6 s or its relaxed
version Ω`1A : ||α(i)||1 6 s, the K-SVD algorithm [3] solves
it for local minima in an iterative way.

In this work, we follow the VQ-based interpretation of Eq.
1, where, as a general formulation, it is required that:

ΩVQ
A : ||αi||0 = ||αi||1 = 1.

This problem can be solved using the k-means algorithm.
However, the lack of structure for this formulation leads to
poor generalization performance. To address some of the is-
sues with this simple formulation, Product Quantization (PQ)
(e.g., [9] [10]) divides the vectors into several blocks and
runs k-means on each of them independently. While PQ can
achieve good rate-distortion performance under certain condi-
tions, its lack of design flexibility and the fact that the system
should be re-trained for every rate, makes PQ not a suitable
solution for image analysis.

As an alternative, RQ is a multi-layer approach that at
each layer quantizes the residuals of quantization of the previ-
ous layer. While having been extensively studied in the 80’s
and 90’s for different tasks like image coding (e.g., refer to
[11], [12] or [9]), its efficiency was limited for more modern
applications. In practice, it was not possible to learn code-
words for more than a couple of layers.

In this work, we use an approach based on the RQ for
which we introduce a pre-processing and an efficient reg-
ularization, making it possible to learn arbitrary numbers
of layers. Moreover, the introduced regularization makes
it possible to go beyond the image patches and work with
the high-dimensional image directly. This brings an impor-
tant advantage for different tasks like image compression.
Since the global picture of the image is preserved in the high-
dimensional representation, one does not have to encode the
relation between similar patches after compression.

1Notation: matrix X, random variable X , random vector X and vector x
2See [7] and [8] for detailed reviews and discussions

3. PROPOSED FRAMEWORK: RRQ

We first recall a concept from rate-distortion theory which is
the quantization of Gaussian independent sources. Although
in a slightly different setup than a practical quantization (e.g.
being asymptotic), this motivates the core idea behind the
RRQ algorithm introduced next in this chapter.

3.1. Preliminaries: Quantization of independent sources

The trade-off between the compactness and the fidelity of rep-
resentation of a signal is classically treated in the Shannon’s
rate-distortion theory [13]3.

A special setup studied in this theory is the rate-distortion
for n independent Gaussian distributed sources, Xj’s with
different variances. Concretely, assume Xj ∼ N (0, σ2

j ). De-
fine the expected distortion between a random vector and its
estimate as D , E[d(X, X̂)], where the distortion between
two n-vectors a and b is defined as d(a,b) , 1

n ||a− b||22.
Here we ask the question: Given a fixed total distortion D

allowed, i.e., D 6 D, what is the optimal way to divide the
distortion (or rate) between these sources such that the overall
allocated rate (distortion) is minimized? This can be posed as:

min
Dj

n∑
j=1

max
[
0,

1

2
log2

σ2
j

Dj

]
,

s.t.
n∑
j=1

Dj = D,

(2)

whereDj is the distortion of each source after rate-allocation.
The solution to this convex problem is known as the reverse
water-filling and is given as:

Dj =

{
γ, if σ2

j > γ

σ2
j , if σ2

j < γ.
(3)

where γ is a constant which should be chosen to guarantee
that

∑n
j=1Dj = D.

Denote σ2
Cj

, the variance of the codewords for quantiza-
tion of Xj . Due to the principle of orthogonality and the in-
dependence of dimensions, we have that σ2

Cj
= σ2

j − Dj .
Therefore, according to Eq. 3, the optimal assignment of the
codeword variances will be a soft-thresholding of σ2

j with γ:

σ2
Cj =

(
σ2
j − γ

)+
=

{
σ2
j − γ, if σ2

j > γ

0, if σ2
j < γ.

(4)

This means that the optimal rate-allocation requires that
the sources with variances less than γ should not be assigned
any rate at all. This, when used in the codebook design, re-
sults in sparsity of the codewords which we incorporate in the
RRQ algorithm.

3Refer to Ch. 10 of [14] for further details of this subsection.



Algorithm 1 Pre-processing

Input: Itrain = {I(i), · · · , I(N)}, images in the train set.
Output: X, matrix of decorrelated vectors, V1, · · · ,VM , ro-

tation matrices for the sub-bands.
1: for i ∈ Itrain do
2: I′(i)← 2D-DCT[I(i)]
3: x′(i)← zig-zag[I′(i)] . : zig-zag vectorization
4: Divide x′(i) into M equal sub-bands: x′(i) =

[x′1(i), · · · ,x′M (i)]
5: for m = 1, · · · ,M do
6: Stack all x′m(i)’s to get Xm

7: end for
8: end for
9: for m = 1, · · · ,M do

10: Perform PCA on X′m (without dim. reduction) to get
Xm and Vm, the rotation matrix

11: Concatenate Xm’s to get X
12: end for

Algorithm 2 Regularized Residual Quantization

Input: de-correlated train set X
Output: multi-layer codebooks C(l)’s and index sets A(l)’s,

with l = 1, · · · , L
1: X̂← O
2: X(0) ← X
3: [D

(0)
1 , · · · , D(0)

n ]← var[X(0)] . variance per dimension
4: for l = 1, · · · , L do

5: γ∗ ← argmin
γ

(
| log2K

(l) − ∑
j∈Aγ

1
2 log2

D
(l−1)
j

γ |
)

6: for j = 1, · · · , n do

7: σ2

C
(l)
j

←
(
D

(l−1)
j − γ∗

)+
8: end for
9: S(l) ← diag(σ2

C
(l)
1

, · · · , σ2

C
(l)
n

)

10: for k = 1, · · · ,K(l) do
11: c

(l)
k ← Generate randomly from N (0,S(l))

12: Concatenate c
(l)
k ’s to get C(l)

13: end for
14: for i = 1, · · · , N do
15: k∗ ← argmin16k6K(l) ||x(i)(l−1) − c

(l)
k ||2

16: α(i)(i) ← all-zero vector with 1 at the k∗ position
17: Concatenate α(i)(l)’s to get A(l)

18: end for
19: X̂(l) ← C(l)A(l)

20: X̂← X̂ + X(l)

21: X(l) ← X(l−1) − X̂(l)

22: [D
(l)
1 , · · · , D(l)

n ]← var[X(l)]
23: end for

3.2. The RRQ algorithm

Inspired by the setup studied in section 3.1, we argue that af-
ter a pre-processing stage, natural images can be represented
in a global representation as variance decaying vectors which
have independent, or at least uncorrelated dimensions. One
might think of the PCA as a simple way to achieve this. How-
ever, since the dimensionality of the entire vectorized image
is high, apart from the big complexities incurred, there will
be too many parameters in the covariance matrix to estimate.
Therefore, a global PCA will likely over-fit to the training,
largely deviating from the test set. To overcome this issue, we
propose the pre-processing in Algorithm 1.

After the PCA rotation matrices are learned from the
training set, the same procedure applies to images from the
test set. In fact, this pre-processing is a more robust esti-
mation for the global PCA. Instead of n2 parameters of the
direct PCA rotation matrix, with the help of 2D-DCT, this
pre-processing has m( nm )2 parameters to estimate. This is
an effective way to trade independence of dimensions for
robustness between train and test sets.

The RRQ framework is introduced in Algorithm 2. For
each of the L layers, given the desired number of codewords,
K(l), after calculation of the variances of the residuals, the
algorithm first finds the optimal γ∗ and calculates the opti-
mal variances of the codewords based on Eq. 4 and then ran-
domly generates K(l) codewords based on these variances.
Especially at the first layers, since the data has a very strong
decaying character, this makes the codewords very sparse,
significantly reducing the complexity and storage cost of the
codebooks. The algorithm continues by quantizing the resid-
uals x(i)(l−1)’s with the generated codewords and updating
the estimations x̂(i)(l)’s and the new residuals x(i)(l)’s and
finishes at the desired L.

4. EXPERIMENTS

We perform the two tasks of image compression and denois-
ing of facial images. For image compression, we compare
the performance of our proposed method with the JPEG and
JPEG-2000 standards. For denoising, we compare with the
BM3D. These are widely considered as baselines for compar-
ison in the literature.

The CroppedYale-B set [15] is used which contains 2408
images of size 192 × 168 from 38 subjects. Each subject
has between 57 to 64 acquisitions with extreme illumination
changes. We choose half of the images for each subject ran-
domly for training and the rest for testing.

We choose two different (L,K) value-pairs, (1000, 256)
and (2000, 16), where L is the number of layers and K is the
number of codewords per each layer. As described earlier,
all codewords are generated randomly according to Eq. 4.
Algorithm 1 is used for pre-processing with m = 96 sub-
bands. The resulting decorrelated vectors are of size n =
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Fig. 1: D-R, compression and denoising average performances on the CroppedYale-B set.

192× 168 = 32256 (same as the original images).
Figure 1a sketches the D-R curve for this set. It is seen

that the gap between the training and the test sets for the pro-
posed RRQ is very small, indicating the success of the algo-
rithm in terms of generalization. The non-regularized RQ, on
the other hand, while has much lower distortion on the train
set, fails to compress the test set at the first several layers.

Fig. 1b shows the results of image compression. These
results are averaged over 20 randomly chosen images from
the test set. The advantage of the proposed method under
this setup over the highly-optimized JPEG-2000 codec is sig-
nificant, particularly at lower rates. It should be noted that
we do not perform any entropy coding over the codebook in-
dices. Further compression improvement can be achieved by
entropy coding over the tree-like structure of the codebooks.

The results of image denoising for three different noise
levels4, averaged over 20 randomly chosen test images are
depicted in Fig. 1c. The network is trained over clean im-
ages and is exactly the same as the one used for compression.
Test images are contaminated with noise and are given as the
input to the network for reconstruction. When reconstructing
the noisy image, the network uses the priors from the clean
images based on which it has been trained. These priors are
automatically used in the reconstruction process, serving as
a very efficient denoising strategy surpassing (only at highly
noisy regimes), the prior-less BM3D.

As the network tries to reconstruct the noisy image with
further details, the noise statistics are becoming more present
in the reconstructed image, hence degrading the quality.
Therefore, depending on the noise variance, the maximum
PSNR is somewhere in the middle of the distortion-rate
curve. Noisier images have the maximum at lower rates.

Fig. 2 illustrates the denoising quality for two image sam-
ples. It is interesting to notice that the BM3D, although pro-
ducing a smooth image, fails to reconstruct the face contours
since it lacks enough priors.

4Gray values are normalized between 0 and 1.

σ2
Z = 0.3 23.49 dB 24.73 dB

σ2
Z = 0.15 25.82 dB 25.77 dB

Fig. 2: Samples of image denoising. Order of columns: orig-
inal image, noisy (noise variance), BM3D (PSNR) and RRQ
(PSNR).

5. CONCLUSIONS

A framework for multi-layer representation of images was
proposed where, instead of local patch-based processing, a
global high-dimensional vector representation of images is
successively quantized within different levels of reconstruc-
tion fidelity. As an alternative to the classical RQ framework
which is based on k-means, the proposed RRQ along with
pre-processing, randomly generates codewords from a regu-
larized and learned distribution. Apart from the many poten-
tial advantages of having random codewords, this is shown
lo lead to efficient quantization with low train-test distortion
gaps. The experimental results show interesting promise for
different practical scenarios, e.g., when the acquisition de-
vices at the query phase are much noisier than the enrollment
cameras. Future works consider using the variance priors to
further train the codewords, moreover using entropy coding
on the tree of indices for better rate-distortion performance.
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