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Abstract

One popular approach to interactively segment the fore-
ground object of interest from an image is to annotate a
bounding box that covers the foreground object. Then, a
binary labeling is performed to achieve a refined segmenta-
tion. One major issue of the existing algorithms for such in-
teractive image segmentation is their preference of an input
bounding box that tightly encloses the foreground object.
This increases the annotation burden, and prevents these
algorithms from utilizing automatically detected bounding
boxes. In this paper, we develop a new LooseCut algorithm
that can handle cases where the input bounding box only
loosely covers the foreground object. We propose a new
Markov Random Fields (MRF) model for segmentation with
loosely bounded boxes, including a global similarity con-
straint to better distinguish the foreground and background,
and an additional energy term to encourage consistent la-
beling of similar-appearance pixels. This MRF model is
then solved by an iterated max-flow algorithm. In the exper-
iments, we evaluate LooseCut in three publicly-available
image datasets, and compare its performance against sev-
eral state-of-the-art interactive image segmentation algo-
rithms. We also show that LooseCut can be used for en-
hancing the performance of unsupervised video segmenta-
tion and image saliency detection.

1. Introduction

Accurately segmenting a foreground object of interest
from an image with convenient human interactions plays
a central role in image and video editing. One widely used
interaction is to annotate a bounding box around the fore-
ground object. On one hand, this input bounding box pro-
vides the spatial location of the foreground. On the other

hand, based on the image information within and outside
this bounding box, we can have an initial estimation of
the appearance models of the foreground and background,
with which a binary labeling is finally performed to achieve
a refined segmentation of the foreground and background

(15. 17,16, (181 13 [10].
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Figure 1. Sample results from GrabCut and the proposed LooseCut
with tightly and loosely bounded boxes.

However, due to the complexity of the object boundary
and appearance, most of the existing methods of this kind
prefer the input bounding box to tightly enclose the fore-
ground object. An example is shown in Fig. [T} where the
widely used GrabCut [15] algorithm fails when the bound-
ing box does not tightly cover the foreground object. The
preference of a tight bounding box increases the burden of
the human interaction, and moreover it prevents these al-
gorithms from utilizing automatically generated bounding
boxes, such as boxes from object proposals [2} 23] 22], that
are usually not guaranteed to tightly cover the foreground
object. In this paper, we focus on developing a new Loose-
Cut algorithm that can accurately segment the foreground
object with loosely-bounded boxes.

A loosely bounded box may contain more background
than a tightly bounded box. As a result, the initial ap-



pearance model of the foreground is highly inaccurate by
using the pixels within the bounding box. This may sub-
stantially reduce the segmentation performance as shown by
the Grabcut result in Fig. [} In this paper, we propose two
strategies to address this problem. First, we explicitly em-
phasize the appearance difference between the foreground
and background models. Second, we explicitly encourage
the consistent labeling to the similar-appearance pixels, ei-
ther adjacent or non-adjacent. These two strategies can help
identify the background pixels within the bounding box, as
shown in Fig. 2]
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Figure 2. An illustration of the two strategies used in the proposed
LooseCut algorithm. (a) By emphasizing their appearance differ-
ence, foreground and background are better separated even with
a loosely bounding box. (b) By encouraging label consistency of
similar-appearance pixels, background pixel Pp inside the loosely
bounded box is correctly labeled as background due to its appear-
ance similarity to the background pixel P4 outside the bounding
box.

In this paper, we follow GrabCut by formulating the
foreground/background segmentation as a binary labeling
over an MRF built upon the image grid, and the appear-
ances of the foreground and background are described by
two Gaussian Mixture Models (GMMs). More specifically,
we add a global similarity constraint and a label consis-
tency term to the MRF energy to implement the above
mentioned two strategies. Finally, we solve the proposed
MRF model using an iterated max-flow algorithm. In the
experiments, we evaluate the proposed LooseCut in three
publicly-available image datasets, and compare its perfor-
mance against several state-of-the-art interactive image seg-
mentation algorithms. We also show that LooseCut can be
used for enhancing the performance of unsupervised video
segmentation and image saliency detection.

The remainder of the paper is organized as follows. Sec-
tion ] reviews the related work. Section [3] describes the
proposed LooseCut algorithm in detail. Section [] reports
the experimental results, followed by a briefly conclusion
in Section

Loose Input Box

2. Related Work

In recent years, interactive image segmentation based
on input bounding boxes have drawn much attention in
the computer vision and graphics community, resulting in
a number of effective algorithms [[15 [17, 16} [18} [13} [10].
Starting from the classical GrabCut algorithm, many of
these algorithms use graph cut models: the input image

is modeled by a graph and the foreground/background seg-
mentation is then modeled by a binary graph cut that min-
imizes a pre-defined energy function [6]]. In GrabCut [15]],
initial appearance models of the foreground and background
are estimated using the image information within and out-
side the bounding box. A binary MRF model is then ap-
plied to label each pixel as the foreground or background,
based on which the appearance models of the foreground
and background are re-estimated. This process is repeated
until convergence. As illustrated in Fig. [I] the performance
of GrabCut is highly dependent on the initial estimation of
the appearance models of the foreground and background,
which might be very poor when the input bounding box
does not tightly cover the foreground object. The LooseCut
algorithm developed in this paper also follows the general
procedure introduced in GrabCut, but introduce a new con-
straint and a new energy term to the MRF model to specifi-
cally handle the loosely-bounded boxes.

PinPoint [[13] is another MRF-based algorithm for inter-
active image segmentation with a bounding box. It incorpo-
rates a topology prior derived from geometry properties of
the bounding box and encourages the segmented foreground
to be tightly enclosed by the bounding box. Therefore, its
performance gets much worse with a loosely bounded box.
Also using an MRF model, OneCut [17] is recently devel-
oped for interactive image segmentation. Its main contribu-
tion is to incorporate an MRF energy term that reflects the
appearance overlap between foreground and background
histograms. As shown in the latter experiments, the L-
distance based appearance overlap used in OneCut is still
insufficient to handle loosely-bounded boxes. In [16], a
pPBC algorithm is developed for interactive image segmen-
tation using an efficient parametric pseudo-bound optimiza-
tion strategy. However, in our experiment shown in Section
[l pPBC still cannot give satisfactory segmentation results
when the input bounding box is loose.

Other than using the MRF model, MILCut [[18]] formu-
lates the interactive image segmentation as a multiple in-
stance learning problem by generating positive bags along
the sweeping lines within the bounding box. MILCut may
not generate the desirable positive bags along the sweeping
lines for a loosely bounded box. Active contour [[10] takes
the input bounding box as an initial contour and iteratively
deforms it toward the boundary of the foreground object.
Due to its sensitivity to image noise, active contour usu-
ally requires the initial contour to be close to the underlying
foreground object boundary.

3. Proposed Approach

In this section, we first briefly review the classical Grab-
Cut algorithm and then explain the proposed LooseCut al-
gorithm.



3.1. GrabCut

GrabCut [15]] actually performs a binary labeling to each
pixel using an MRF model. Let X = {z;},_, be the binary
labels at each pixel ¢, where z; = 1 if ¢ is in foreground
x; = 01if ¢ is in background and let § = (M, M;) denotes
the appearance models including foreground GMM M and
background GMM M. Grabcut seeks an optimal labeling
that minimizes

Ecc (X,0) =Y D(z:,0)+ > Vi(xsa;), (1)
i 1,5EN

where N defines a pixel neighboring system, e.g., 4-
neighbor or 8-neighbor connectivity. The unary term
D (z;,0) measures the cost of labeling pixel 4 as foreground
or background based on the appearance models 6. The pair-
wise term V' (z;, x;) enables the smoothness of the labels
by penalizing discontinuity among the neighboring pixels
with different labels. Max-flow algorithm [6] is usually
used for solving this MRF optimization problem. GrabCut
takes the following steps to achieve the binary image seg-
mentation with an input bounding box:

1. Estimating initial appearance models €, using the pix-
els inside and outside the bounding box respectively.

2. Based on the current appearance models 6, quantiz-
ing the foreground and background likelihood of each
pixel and using it to define the unary term D (x;, 6).
And solve for the optimal labeling that minimizes

Eq. (D).

3. Based on the obtained labeling X, refining 6 and go-
ing back to Step 2. Repeating this process until con-
vergence.

3.2. MRF Model for LooseCut

Following the MRF model used in GrabCut, the pro-
posed LooseCut takes the following MRF energy function:

E(Xv 9) = EGC(Xa 0) +ﬂELC(X)’ 2

where E¢c is the GrabCut energy given in Eq. (I)), and
FEr ¢ is an energy term for encouraging label consistency,
weighted by 5 > 0. In minimizing Eq. (2)), we enforce a
global similarity constraint to better estimate 6 and distin-
guish the foreground and background. In the following, we
elaborate on the global similarity constraint and the label
consistency term Epo(X).

3.3. Global Similarity Constraint

In this section, we define the proposed global similarity
constraint. Let My have Ky Gaussian components M } with
means pjp , 1 =1,2,--- Ky and M, have K; Gaussian
components M,f with means ui , 7 =12,--- K;. For

each Gaussian component M } in the foreground GMM My,

)

we first find its nearest Gaussian component M, g @ in M, as

j@) =arg _min |uh—uf. 3)

Je{1,....Kp}
With this, we can define the similarity between the Gaussian
component M} and the entire background GMM M, as
- 1
S(Mi M) = ——— 0
i 70 (1)
P

which is the inverse of the mean difference between M } and
its nearest Gaussian component in the background GMM.
Then, we define the global similarity function Sim as

Ky
Sim(Mg, My) = S (M}, M) . (5)

i=1
Similar definition for GMM distance could be found in
[19]. In the MRF minimization, we will enforce the global
similarity Sim (M, M) to be low (smaller than a thresh-

old) in the step of estimating # and details will be discussed
in Section

3.4. Label Consistency Term F; -

To encourage the label consistency of the similar-
appearance pixels, either adjacent or non-adjacent, we first
cluster all the image pixels using a recent superpixel algo-
rithm [21] that preserves both feature and spatial consis-
tency. Following a K-means-style procedure, this cluster
algorithm partitions the image into a set of compact super-
pixels and each resulting cluster is made up of one or more
superpixels. An example is shown in Fig. 3] where the re-
gion color indicates the clusters: superpixels with the same
color constitute a cluster.

Figure 3. An illustration of the superpixel based clusters and label
consistency. Three clusters are shown in different colors.

Let C indicates the cluster k, and pixels belonging to
C}, should be encouraged to be given the same label, e.g.,
p1 and po in Fig.[3] To accomplish this, we set a cluster label
x¢, (taking values O or 1) for each cluster C}, and define the
label-consistency energy term as

Ere(X) =YY" oz #xc,), 6)

k 1€Cy

where ¢(-) is an indicator function taking 1 or O for true or
false argument. In the proposed algorithm, we will solve for



both the pixel labels and cluster labels simultaneously in the
MREF optimization.

3.5. Optimization

In this section, we propose an algorithm to find the opti-
mal binary labeling that minimizes the energy function de-
fined in Eq. (2), subject to the global similarity constraint.
Specifically, in each iteration, we first fix the labeling X and
optimize over 6 by enforcing the global similarity constraint
on Sim(My, My). After that, we fix 6 and find an optimal
X that minimizes E'(X, 0). These two steps of optimization
is repeated alternately until convergence or a preset maxi-
mum number of iterations is reached. As an initialization,
we use the input bounding box to define a binary labeling X
in iteration 0. In the following, we elaborate on these two
optimization steps.

Fixing X and Optimizing over 0: With fixed binary
labeling X, we can estimate 6 using a standard EM-based
clustering algorithm: All the pixels with label 1 are taken
for computing the foreground GMM M/ and all the pix-
els with label O are used for computing the background
GMM M. We intentionally select Ky and Kj such that
K = Ky — K; > 0 since some background components
are mixed to the foreground for the initial X defined by a
loosely bounded box. For the obtained My and Mj,, we ex-
amine whether the global similarity constraint is satisfied,
i.e, Sim(My, My) < § or not. If this constraint is satisfied,
we take the resulting 6 and continue to the next step of opti-
mization. If this constraint is not satisfied, we further refine
M using the following algorithm:

1. Calculate the similarity S(M},Mb) between each
Gaussian component of My and My, by following
Eq. @) and identify the K Gaussian components of
M with the largest similarity to Mj.

2. Among these K components, if any one, say M}, does
not satisfy S(M}, My) < 6, we delete it from M.

3. After all the deletions, we use the remaining Gaussian
components to construct an updated M.

This algorithm will ensure the updated M and M, satisfies
the global similarity constraint.

Fixing 6/ and Optimizing over X: Inspired by [11]
and [[17]], we build an undirect graph with auxiliary nodes
as shown in Fig. d]to find an optimal X that minimizes the
energy E'(X, 6). In this graph, each pixel is represented by
a node. For each pixel cluster C, we construct an auxil-
iary node Ay, to represent it. Edges are constructed to link
the auxiliary node Ay and the nodes that represent the pix-
els in C, with the edge weight 3 as used in Eq. (Z). An
example of the constructed graph is shown in Fig. [4] where
pink nodes vy, vs, and vg represent three pixels in a same
cluster, which is represented by the auxiliary node A;. All

the nodes in blue represent another cluster. With a fixed 6,
we use the max-flow algorithm [6] on this graph to seek an
optimal X that minimizes the energy E(X,0).

Figure 4. Graph construction for the step of optimizing over X
with a fixed 6. v;’s are the nodes for pixels and A;’s are the aux-
iliary nodes. .S and T are the source and sink nodes. Same color
nodes represent a cluster.

The graph constructed as in Fig.[d]is similar to the graph
constructed in OneCut [[17]. However, there are two major
differences between the proposed algorithm and OneCut.

1. In OneCut, a color histogram is first constructed for
the input image and then one auxiliary node is con-
structed for each histogram bin. All the pixels are then
quantized into these bins and the pixels in each bin are
then linked to its corresponding auxiliary node. In this
paper, we use superpixel-based clusters to define the
auxiliary nodes.

2. The unary energy term in OneCut is different from the
one in the proposed method and as a result, we de-
fine the edge weights involving the source and sink
nodes differently from OneCut. OneCut follows the
ballooning technique: The weight is set to 1 for the
edges between S and any pixels inside the bounding
box, and 0 otherwise; Similarly, the weight is set to 0
for the edges between 7" and any pixels in the bound-
ing box, and oo otherwise. In the proposed algorithm,
the weights of the edges that are incident from S or 7'
reflect the unary term in Eq. (2)), which is based on the
appearance models 6.

With these two differences, OneCut seeks to minimize
the L;-distance based histogram overlap between the fore-
ground and background. This is different from the goal of
the proposed algorithm: we seek better label consistency of
the pixels in the same cluster by using this graph structure.
We will compare with OneCut in the latter experiments.
The full LooseCut algorithm is summarized in Algorithm

il
4. Experiments

To justify the proposed LooseCut algorithm, we con-
duct experiments on three widely used image datasets —
the GrabCut dataset [[15]], the Weizmann dataset [3 5],
and the iCoseg dataset [4], and compare its performance



Algorithm 1 LooseCut
Input: Image I, bounding box B, # of clusters NV
Output: Binary labeling X to pixels in /

1: Construct N superpixel based clusters using [21].

2: Create initial labeling X using box B.

3: repeat

4:  Based on the current labeling X, estimate and update
6 by enforcing Sim(M;y, M) < 6.

5:  Construct the graph using the updated 6 with N aux-
iliary nodes as shown in Fig. 4]

6:  Apply the max-flow algorithm [6] to update labeling
X by minimizing E(X, 9).

7: until Convergence or maximum iterations reached

against several state-of-the-art interactive image segmenta-
tion methods, including GrabCut [15]], OneCut [17], MIL-
Cut [18]], and pPBC [16]. We also conduct experiments to
show the effectiveness of LooseCut in two applications: un-
supervised video segmentation and image saliency detec-
tion.

Maetrics: As in [|18]] [17] [[L3], we use Error Rate to eval-
uate an interactive image segmentation by counting the per-
centage of misclassified pixels inside the bounding box. We
also take the pixel-wise F-measure as an evaluation metric,
which combines the precision and recall metrics in terms of
the ground-truth segmentation.

Parameter Settings: For the number of Gaussian com-
ponents in GMMs, Kj, is set to 5 and Ky is set to 6. As dis-
cussed in Section@ K = Ky — K; = 1. To enforce the
global similarity constraint, we delete K = 1 component in
M. The number of clusters (auxiliary nodes in graph) is set
to N = 16. For the LooseCut energy defined in Eq. (), we
consistently set 5 = 0.01. The unary term and binary term
in Eq. are the same as in [15] and RGB color features
are used to construct the GMMs. We set 6 = 0.02 in delet-
ing the foreground GMM component to enforce the global
similarity constraint. For all the comparison methods, we
follow their default or recommended settings in their codes.

L=0% L =240% L =600%

B0l

Figure 5. Bounding boxes with different looseness. From left to
right: image, ground-truth foreground, baseline bounding box and
a series of bounding boxes with increased looseness.

4.1. Interactive Image Segmentation

In this experiment, we construct bounding boxes with
different looseness and examine the resulting segmenta-
tion. As illustrated in Fig.[5] we compute the fit box to the
ground-truth foreground and slightly dilate it by 10 pixels
along four directions, i.e., left, right, up, and down. We take
it as the baseline bounding box with 0% looseness. We then
keep dilating this bounding box uniformly along all four di-
rections to generate a series of looser bounding boxes — a
box with a looseness L (in percentage) indicates its area in-
crease by L against the baseline bounding box. A bounding
box will be cropped when any of its sides reaches the image
perimeter. An example is shown in Fig. 5]

GrabCut dataset [[15] consists of 50 images. Nine of
them contain multiple objects while the ground truth is only
annotated on a single object, e.g., ground truth only label
one person but there are two people in the loosely bounded
box. Such images are not applicable to test performance
change when we enlarge the box looseness. Therefore, we
use the remaining 41 images in our experiments. From
Weizmann dataset [3. 5], we pick a subset of 45 images for
testing, by discarding the images where the baseline bound-
ing box has almost cover the full image and cannot be di-
lated to construct looser bounding boxes. For the similar
reason, from iCoseg dataset [4], we select a subset of 45
images for our experiment.

Experimental results on these three datasets are summa-
rized in Fig. [6] In general, the segmentation performance
degrades when the bounding-box looseness increases for
both the proposed LooseCut and all the comparison meth-
ods. However, LooseCut shows a slower performance
degradation than the comparison methods. When the loose-
ness is high, e.g., L = 300% or L = 600%, LooseCut
shows much higher F-measure and much lower Error Rate
than all the comparison methods. Since MILCut’s code is
not publicly available, we only report MILCut’s F-measure
and Error Rate values with the baseline bounding boxes on
the GrabCut dataset and the Weizmann dataset by copy-
ing it from the original paper. Table |I| reports the values
of F-measure and Error Rate of segmentation with varying-
looseness bounding boxes on GrabCut dataset. Sample seg-
mentation results, together with the input bounding boxes
with different looseness, are shown in Fig. E}

4.2. Unsupervised Video Segmentation

The goal of unsupervised video segmentation is to au-
tomatically segment the objects of interest from each video
frame. The segmented objects can then be associated across
frames to infer the motion and action of these objects. It
is important for video analysis and semantic understanding
[8]]. One popular approach for unsupervised video segmen-
tation is to detect a set of object proposals, in the form of
bounding boxes [12], from each frame and then extract the
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Figure 6. Interactive image segmentation performance (top: F-measure; bottom: Error Rate) on three widely used datasets.
Methods L=0% L =120% L = 240% L = 600%
F-measure | Error Rate | F-measure | Error Rate | F-measure | Error Rate | F-measure | Error Rate

GrabCut 0.916 7.4 0.858 10.1 0.816 12.6 0.788 13.7
OneCut 0.923 6.6 0.853 8.7 0.785 9.9 0.706 13.7
pPBC 0.910 7.5 0.844 9.1 0.827 9.4 0.783 12.3

MILCut - 3.6 - - - - - -
LooseCut 0.882 7.9 0.867 5.8 0.844 6.9 0.826 6.8

Table 1. Segmentation performance on GrabCut dataset with bounding boxes of different looseness.

objects of interest from these proposals [20].

In practice, a detected proposal may only cover part of
the object of interest, so we detect a set of object proposals
and merge them together to construct a large mask, which
has a better chance to cover the whole object. Clearly, this
merged mask may only loosely bound the object of inter-
est and the object could be extracted by mask based seg-
mentation algorithms. Specifically, we apply a recent Fu-
sionEdgeBox algorithm [22]] to detect top 10 object propos-
als in each video frame for the merged mask.

This experiment is conducted on a subset (21 videos,
657 frames) of JHMDB video dataset [9]. Table E] shows
the unsupervised video segmentation performance, in terms
of F-measure and Error Rate averaged over all the frames.
We can see that the proposed LooseCut substantially out-
performs GrabCut, OneCut and pPBC in this task. Sample
video segmentation results are shown in Fig.[8]

Methods F-measure Error Rate
FusionEdgeBox Mask 0.35 77.0
GrabCut 0.55 30.5
OneCut 0.58 25.1
pPBC 0.54 31.6
LooseCut 0.64 17.0

Table 2. Unsupervised video segmentation performance.

4.3. Image Saliency Detection

Recently, GrabCut has been used to detect the salient
area from an image [14]. As illustrated in Fig.[9} a set of
pre-defined bounding boxes are overlaid to the input image
and with each bounding box, GrabCut is applied for a fore-
ground segmentation. The probabilistic saliency map is fi-
nally constructed by combining all the foreground segmen-
tations. In this experiment, it is clear that many pre-defined
bounding boxes are not tight.

In this experiment, out of 1000 images in the Salient Ob-
ject dataset [[1], we randomly select 100 images for test-
ing. 15 pre-defined masks are shown in Fig.[9} For quan-
titative evaluation, we follow [I]] to binarize a resulting
saliency map using an adaptive threshold (two times the
mean saliency of the map). Table[3|reports the precision, re-
call and F-measure of saliency detection when using Grab-
Cut, OneCut, pPBC, and LooseCut for foreground segmen-
tation. We also include comparisons of two state-of-the-
art saliency detection methods that do not use pre-defined
masks, namely FT [1] and RC [7]. Sample saliency detec-
tion results are shown in Fig.

We can see that LooseCut outperforms GrabCut, OneCut
and pPBC in this task. It also outperforms FT which does
not use bounding-box based segmentation. RC [7] achieves
the best performance for saliency detection, because it com-
bines more complex saliency cues than segmentation based
approach.
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Methods GrabCut Dataset Weizman Dataset iCoseg Dataset
F-measure | Error Rate | F-measure | Error Rate | F-measure | Error Rate
LooseCut w/o proposed constraint & term 0.788 13.7 0.688 194 0.686 15.0
LooseCut w/o global similarity constraint 0.801 12.0 0.709 17.9 0.691 14.8
LooseCut w/o label consistency term 0.822 7.3 0.836 7.4 0.806 6.3
LooseCut 0.826 6.8 0.841 6.6 0.808 6.1

Table 4. The usefulness of the proposed global similarity constraint and the label consistency term in LooseCut.
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Figure 10. Sample saliency detection results.

Methods Precision | Recall F-measure
FT 0.75 0.57 0.61
RC 0.86 0.85 0.84

GrabCut 0.85 0.61 0.67
OneCut 0.86 0.76 0.77
pPBC 0.84 0.66 0.69

LooseCut 0.84 0.78 0.78

Table 3. Performance of saliency detection.

4.4. Additional Results

In this section, we report additional results that justify
the usefulness of the global similarity constraint and the la-
bel consistency term, the running time of the proposed al-
gorithm and possible failure cases.

We run experiments on the three image segmentation
datasets when L = 600% by removing the global simi-
larity constraint and/or the label consistency term, together
with their corresponding optimization steps in the pro-
posed LooseCut algorithm. The quantitative performance is
shown in Table[d] We can see that both the global similarity
constraint and the label consistency term help improve the
segmentation performance. The global similarity constraint
helps improve the segmentation performance more signifi-
cantly than the label consistency term.

For the running time, we test LooseCut and all the com-
parison methods on a PC with Intel 3.3GHz CPU and 4GB
RAM. We compares their running time for different image
size. In this experiment, OneCut only has one iteration, and
the iterations of GrabCut and LooseCut are stopped until

convergence or a maximum 10 iterations is reached. As
shown in Table@ if the image size is less than 512 x 512,
the running time of three algorithms are very close. For
large images, LooseCut and OneCut takes more time than
GrabCut. In general, LooseCut still shows reasonable run-
ning time. Our current LooseCut code is implemented in
Matlab and C++, and it can be substantially optimized for
speed.

Methods 64*64 128*128 256%256 512*512 1024*1024
GrabCut 0.16 0.28 1.47 3.81 2521
OneCut 0.03 0.09 0.49 5.72 77.80
pPBC 0.14 0.37 2.70 26.14 305.60

LooseCut 0.32 0.43 1.68 7.63 66.52

Table 5. Running time (in seconds) with increasing image size.

Due to the proposed global similarity constraint and la-
bel consistency term, LooseCut may fail when the fore-
ground and background show highly similar appearances,
as shown in Fig.[T1]

Figure 11. Failure cases of LooseCut.



5. Conclusion

This paper proposed a new LooseCut algorithm for in-
teractive image segmentation by taking a loosely bounded
box. We further introduced a global similarity constraint
and a label consistency term into MRF model. We devel-
oped an iterative algorithm to solve the new MRF model.
Experiments on three image segmentation datasets showed
the effectiveness of LooseCut against several state-of-the-
art algorithms. We also showed that LooseCut can be used
to enhance the important applications of unsupervised video
segmentation and image saliency detection.
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