Multi-layer linear model for top-down modulation of visual attention in natural egocentric vision | IEEE Conference Publication | IEEE Xplore

Multi-layer linear model for top-down modulation of visual attention in natural egocentric vision


Abstract:

Top-down attention plays an important role in guidance of human attention in real-world scenarios, but less efforts in computational modeing of visual attention has been ...Show More

Abstract:

Top-down attention plays an important role in guidance of human attention in real-world scenarios, but less efforts in computational modeing of visual attention has been put on it. Inspired by the mechanisms of top-down attention in human visual perception, we propose a multi-layer linear model of top-down attention to modulate bottom-up saliency maps actively. The first layer is a linear regression model which combines the bottom-up saliency maps on various visual features and objects. A contextual dependent upper layer is introduced to tune the parameters of the lower layer model adaptively. Finally, a mask of selection history is applied to the fused attention map to bias the attention selection towards the task related regions. Efficient learning algorithm with single-pass polynomial complexity is derived. We evaluate our model on a set of natural egocentric videos captured from a wearable glass in real-world environments. Our model outperforms the baseline and state-of-the-art bottom-up saliency models.
Date of Conference: 17-20 September 2017
Date Added to IEEE Xplore: 22 February 2018
ISBN Information:
Electronic ISSN: 2381-8549
Conference Location: Beijing, China

Contact IEEE to Subscribe

References

References is not available for this document.