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ABSTRACT

The task of MRI fingerprinting is to identify tissue parameters
from complex-valued MRI signals. The prevalent approach
is dictionary based, where a test MRI signal is compared to
stored MRI signals with known tissue parameters and the
most similar signals and tissue parameters retrieved. Such an
approach does not scale with the number of parameters and is
rather slow when the tissue parameter space is large.

Our first novel contribution is to use deep learning as an
efficient nonlinear inverse mapping approach. We generate
synthetic (tissue, MRI) data from an MRI simulator, and use
them to train a deep net to map the MRI signal to the tissue pa-
rameters directly. Our second novel contribution is to develop
a complex-valued neural network with new cardioid activation
functions. Our results demonstrate that complex-valued neural
nets could be much more accurate than real-valued neural nets
at complex-valued MRI fingerprinting.

Index Terms— Magnetic Resonance Fingerprinting, Pa-
rameter Mapping, Complex-valued Neural Networks

1. INTRODUCTION

Fingerprinting in the magnetic resonance imaging (MRI) do-
main [1] quantifies tissue parameters from complex-valued
MRI signals. Tissue in the body may be characterized by how
it interacts with the magnetic field during a MRI scan. Two
tissue parameters, T1 and T2, are exponential time constants,
e.g. e−t/T2, that describe how fast hydrogen protons in differ-
ent tissues react to the applied magnetic field. For example,
T1 and T2 values allow us to discern the boundary between
gray matter (T1= 830, T2= 80) and white matter (T1= 500,
T2= 70) in MRI brain images. These parameters also enable
radiologists to differentiate between benign and malignant
tissues.

Traditional MRI requires many different scans that each
accentuates one of the desired parameters. Additionally, those
scans only provide a qualitative visual contrast between tis-
sues, e.g. in this image, tissues with high T1 are brighter than
other tissues. MRI fingerprinting as proposed in [1], however,
simultaneously produces quantitative values for T1, T2, and
proton density in one single scan. It can also provide infor-
mation about imperfections in the parameters for the applied
magnetic field, i.e. B0 and B1.
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Fig. 1. MRI fingerprinting is an inverse mapping problem that
infers the tissue parameters from MRI signals. MRI simulator
turns a ground-truth (T1, T2, B0) parameter tuple into an
observed MRI temporal signal. The inverse mapping, by either
nearest neighbor search or a neural network, solves for the
tissue parameters given the simulated signal. At test time,
the MRI signal will arrive from the scanner rather than the
simulator. Example complex-valued signals are shown for
cerebral spinal fluid (CSF) and white matter (WM) parameters.

MRI fingerprinting works by scanning the subject using a
predetermined progression of scanner controls, e.g. flip angles
and repetition time (TR) values of the pulse sequence. The
various tissues in the body will react to this pulse sequence,
producing measurable signals that have unique signatures de-
pending on their specific tissue parameter (T1, T2, proton
density) and applied magnetic field parameters (B0, B1). Just
like a fingerprint pattern can identify a specific person, these
measured signals may be decoded to determine the tissue and
magnetic field parameters at each pixel location in the im-
age. Figure 1 shows how MRI fingerprinting uses a numerical
simulator to convert parameters into MRI signals, which are
then used to train an algorithm to solve the inverse problem
of mapping the signal back to the original parameters. When
scanning a patient, the unlabeled MRI signals will arrive from
the scanner to be decoded by the inverse mapping algorithm.

From a machine learning perspective, the MRI simulator
provides a potentially unlimited number of complex-valued
MRI signals for training, each of these temporal sequences
is paired with a tuple of real-valued labels (T1, T2, B0). At
the test time, the MRI scanner acquires a temporal signal at
each pixel location, which must be decoded into to the tissue
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and MRI field parameters. Prior MRI fingerprinting works
[1, 2, 3] have used a nearest neighbor search based approach
to match the measured signal to a dictionary of simulated
training signals. Due to the non-parametric nature of nearest
neighbor methods, the computation time scales linearly with
the size of the dictionary, quickly becoming infeasible with
a finer parameter resolution or when more tissue parameters
are required. Additional research has improved the nearest
neighbor matching efficiency by incorporating SVD [4] and
group matching [5].

Rather than non-parametric nearest neighbor-based meth-
ods, we propose to learn a parameterized model for solving the
MRI fingerprinting inverse mapping problem. Specifically, we
demonstrate that feedforward neural networks can accurately
model the complex non-linear MRI fingerprinting inverse map-
ping function with a computational efficiency that does not
scale with the number of training examples.

We also investigate using complex-valued neural networks
for MRI fingerprinting, since the MRI signals are inherently
complex-valued. While complex-valued signals can be repre-
sented by 2-channel real signals, each channel containing real
and imaginary components respectively, such a representation
does not respect the phase information that is captured by com-
plex algebra. Indeed, by introducing a new complex activation
function for complex neural networks, we demonstrate that
complex-valued neural nets are more effective than real-valued
networks at MRI fingerprinting.

2. COMPLEX-VALUED NEURAL NETWORKS

A significant facet of complex network research since the
early 1990’s has been to overcome the issue that standard real-
valued non-linear layers do not transfer well to complex-valued
networks. We tackle several aspects here.

2.1. Complex Cardioid Activation Function

Standard non-linear functions are either unbounded, e.g.
sigmoid(iπ), or undefined, e.g. the max operator in max
pooling and ReLU. With complex outputs, we have also lost
the probabilistic interpretations that functions like sigmoid
and softmax provide. Past research has explored a range of
potential solutions, for example, limiting the range of the
activation input to avoid unbounded regions [6], or applying
non-linearities to real and imaginary components separately
[7, 8]. In their 1992 paper [9], Georgiou and Koutsougeras pre-
sented an activation that attenuates the magnitude of the signal
while preserving the phase. In our experiments, we refer to
this activation function as siglog as it modifies the magnitude
by applying the sigmoid of the log of the magnitude:

siglog(z) =
z

1 + |z|
= g(log(|z|))e−i]z (1)

g(z) = 1/(1 + e−z). (2)

Fig. 2. Our new cardioid activation function is a phase sensi-
tive complex extension of ReLU. Left / Center: Each arrow
indicates a sample input/output of our cardioid function on the
complex plane. Right: The magnitude transformation of the
cardioid function shows that it is reduced to ReLU on the real
axis (orange line).

We propose a new complex activation function, complex
cardioid, which is sensitive to the input phase rather than the
input magnitude. The output magnitude is attenuated based on
the input phase, while the output phase remains equal to the
input phase. The complex cardioid is defined as:

f(z) =
1

2
(1 + cos(]z))z (3)

With this activation, input values that lie on the positive real
axis are scaled by one, input values on the negative real axis
are scaled by zero, and input values with nonzero imaginary
components are gradually scaled from one to zero as the com-
plex number rotates in phase from positive real axis towards
the negative real axis. When the input values are restricted to
real values, the complex cardioid function is simply the ReLU
activation function. The CR [10] derivatives are as follows:
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2.2. Complex Calculus and Optimization

We leverage Wirtinger calculus, or CR calculus, [11, 10] to
do gradient descent on functions that are not complex differ-
entiable as long as they are differentiable with respect to their
real and imaginary components. The first of two CR calcu-
lus derivatives is the R-derivative (or real derivative) which
computes ∂f/∂z by treating z as a real variable and holding
instances of z constant. Likewise, the other derivative is the
conjugate R-derivative, ∂f/∂z, where z acts as a real variable
and z is held constant.

To optimize a real-valued loss function (L(w)) at the end
of a complex feedforward neural net, we update the weights
by applying the complex version of gradient descent:

w = w − α∇wL, where ∇wL =

[
∂L

∂w1
. . .

∂L

∂wn

]T
(6)

This is the same as real-valued gradient descent with careful
attention paid to the gradient operator. As shown in [12], the
direction of steepest descent is the complex cogradient,∇wL.



3. MRI FINGERPRINTING EXPERIMENTS

Training Data. We simulate the MRI signal with the Bloch
equations and the first of the two pulse sequence parameters
from [1] with signal length 500. We use 100,000 simulated
points for training, randomly sampled with the same T1, T2,
B0 density as used in the baseline nearest neighbor dictionary.

Testing Data. Following [2], we test our methods with a
numerical MRI phantom [13, 14] with the T1, T2, and proton
density values specified for each tissue type in [14]. We add
a liner ramp in the B0 field across the image from -60 Hz to
60 Hz. We compute proton density from the norm of the test
signal as in [1]. Although we do not include any B1 inho-
mogeneity in our experiments, a fourth neural network could
easily be added to incorporate this or any other parameter(s).
In addition to testing with a clean signal from the phantom,
we also tested phantom signals with complex-valued Gaussian
noise added to produce a peak signal-to-noise ratio (pSNR) of
40.

Methods. Fig.3 shows our 3-layer neural network archi-
tecture. We compare six MRI fingerprinting methods.

1. Baseline inner product nearest neighbor and T1, T2, B0
dictionary setup used in [1].

2. Real-valued neural nets with 2-channel real/imaginary
inputs representing complex MRI signals, using the
ReLU activation function.

3. Real-valued neural nets that are twice as wide as the
second model, with 1024 and 512 feature channels in
the two hidden layers.

4. Complex-valued neural nets with 1-channel complex
MRI signals, using our new cardioid activation function.

5. Complex-valued neural nets using separable sigmoid
activation functions (i.e. sigmoid applied to real and
imaginary independently) [7].

6. Complex-valued neural nets using the siglog activation
function [9].
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Fig. 3. Fully connected neural network architecture, repeated
for each desired output label (T1, T2, B0).

Table 1. NRMSE results: fingerprinting from clean signals.

Network T1 T2 ∆ B0

Nearest neighbor 10.63 39.78 1.02
2-ch real/imaginary network 2.71 8.21 2.11
2-ch real/imaginary network 2x 2.21 8.04 2.44
Complex (cardioid) 1.42 4.34 1.32
Complex (separable sigmoid) 4.72 9.24 3.33
Complex (siglog) 2.99 12.04 3.05

Table 2. NRMSE results: fingerprinting from noisy signals.

Network T1 T2 ∆ B0

Nearest neighbor 12.21 40.38 1.08
2-ch real/imaginary network 11.15 17.96 5.23
2-ch real/imaginary network 2x 11.08 22.15 7.08
Complex (cardioid) 9.40 20.98 4.43
Complex (separable sigmoid) 17.31 33.09 18.83
Complex (siglog) 102.22 237.88 266.33

Here we focus on pixel-wise fingerprinting reconstruction.
We plan to extend our approach to full image predictions for
under-sampled MRI fingerprinting in the future.

Deep Learning Implementation. We implement all our
networks in Caffe [15]. For the complex-valued neural nets,
we extend the Caffe platform with complex versions of the
fully connected layer, batch normalization layer, and complex
activation layers, including the CR calculus back propagation
for all the layer functions.

Results. Tables 1 and 2 compare the prediction accuracy
at no noise and pSNR=40 noise level, respectively. Fig. 5
shows sample reconstruction results. Fig. 4 compares the
computational efficiency in terms of the number of floating
point operations (FLOPs). We observe the following:

1. A dictionary based approach explodes exponentially
with more outputs and becomes infeasible. Compared
to the two outputs (T1,T2), the #FLOPs increases by
171× for the three outputs (T1,T2,B0), and by 3,585×
for the four outputs (T1,T2,B0,B1).

Fig. 4. Comparison of floating point operations required to
compute the parameters for a single pixel. Note the log scale.
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Fig. 5. Numerical phantom with added noise (pSNR=40). Predicted quantitative parameters maps images are shown adjacent to
the error image. For visualization purposes, the error images are displayed at 5x the scale of the images.

2. Inverse mapping by neural nets outperforms the tradi-
tional nearest neighbor baseline on T1 and T2 values,
whereas the nearest neighbor approach predicts B0 val-
ues more accurately.

3. Complex-valued neural networks outperform 2-channel
real-valued networks for almost all of our experiments,
and this advantage cannot be explained away by the
twice large model capacity, suggesting that complex-
valued networks can bring out information in the com-
plex data more effectively than treating them as arbitrary
two-channel real data.

4. The complex cardioid activation significantly outper-
formed both the separable sigmoid and siglog activation
functions, allowing complex networks to not only com-
pete with, but surpass, real-valued networks.

Summary. For the complex-valued MRI fingerprinting
problem, we propose a deep learning approach that implements
an efficient nonlinear inverse mapping function that turns MRI

signals to tissue parameters directly1. We generate synthetic
(tissue, MRI) data from an MRI simulator, and use them to
train a neural network. We develop a novel cardioid activation
function that enables the successful real-world application of
complex-valued neural networks. Our results demonstrate that
complex-valued nets can be more accurate than real-valued
nets at complex-valued MRI fingerprinting.
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1A conference abstract exploring neural networks for MRI fingerprinting
[16] was concurrently published with this work.
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