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ABSTRACT

The detection of fiducial points on faces has significantly been
favored by the rapid progress in the field of machine learning,
in particular in the convolution networks. However, the ac-
curacy of most of the detectors strongly depends on an enor-
mous amount of annotated data. In this work, we present a
domain adaptation approach based on a two-step learning to
detect fiducial points on human and animal faces. We evaluate
our method on three different datasets composed of different
animal faces (cats, dogs, and horses). The experiments show
that our method performs better than state of the art and can
use few annotated data to leverage the detection of landmarks
reducing the demand for large volume of annotated data.

Index Terms— Landmarks detection, Machine Learning,
Domain Adaptation, Human faces, Animal faces

1. INTRODUCTION

Detecting landmarks embedded with semantic information
from images is one of the key challenges in image processing
and computer vision fields. In general, landmarks or fiducial
points are related to discriminative locations in the image,
frequently embedding some meaning. For example, in hu-
man or animal faces, a landmark locates regions comprising
the eyes, eyebrows, mouth, and the tip of the nose. After all,
the automatic estimation of landmarks on faces has a myriad
of applications such as faces recognition, game animation,
avatars, and transferring facial expressions [1].

Despite remarkable advances in detecting landmarks on
human faces, most of the methods require a large number of
annotated data. For every different type of face like an animal
such as a cat or a dog face, we still have to use the time-
consuming process of annotating each landmark for a con-
siderable amount of data. In other words, although detecting
the same type of landmarks present in a large dataset of hu-
man faces (e.g., eyes, nose, etc.), we need to build an entirely
new dataset. Thus, a central challenge in facial landmark de-
tection is how to use the annotation available in big datasets
such those for human faces to improve the detection of similar
landmarks but on different types of faces.

In this work, we present a domain adaptation algorithm
based on deep learning to detect landmarks on human and
non-humans faces. Our method builds a landmark detector
by performing two tasks: i) learning to identify landmarks
in a supervised way by using labeled data of human faces
(source domain) and ii) learning to reconstruct non-human
faces with unlabeled data (target domain). The final repre-
sentation of our method preserves the discriminability from
the labeled data and encodes the landmarks locations of the
target domain. This capability suggests that the performance
of our method stems from the creation of a single representa-
tion that encodes the structure information of non-human face
and relevant features for the landmark detection on the human
face.

According to our experiments, our method outperformed
the state-of-the-art landmarks detector for interspecies face
[2] up to 10% precision gap. We evaluated our method on
a variety of type of faces, where it was capable of learning
the cross-domain landmark detection task, without requiring
a big collection of annotated data.

Related Work. In the past several years, a popular approach
for detecting fiducial points was based on using classifiers
[3, 4, 5]. However, recently we have witnessed an explo-
sion of approaches to learning features found on convolution
neural networks. Sun et al. [6] used three levels of convo-
lutional neural networks (CNN) to estimate the position of
landmarks on faces. Thanks to the high-level global charac-
teristics extracted from the entire face, their method increases
the precision of the landmarks detection. To minimize oc-
clusion effects, Zhang et al. [7] proposed a multitask learn-
ing to optimize landmark detection through heterogeneous
but correlated tasks, i.e., head pose and facial attributes in-
ference. Zhang et al. [8] aim at refining the alignment in each
stage. Using an autoenconder approach, they tried to predict
landmarks quickly through low-quality images and progres-
sively improving previous results while increasing its resolu-
tion. The work of Yu et al. [9] used a cascading approach
called deep deformation network (DDN). The DDN learns to
extract the shape information and then uses a landmark trans-
formation network to estimate the local parameterized defor-
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mation aiming to refine first step results.
A significant disadvantage of most CNN based methods is

the need for large-scale datasets. Yang et al. [10] and Rashid
et al. [2] propose to adjust the landmark learning from hu-
man faces to other target topology. The work of Rashid et al.
searches for similar human faces for each animal sample in
an unsupervised method. Yang et al. interpolate face char-
acteristics by cascade regression aiming at detecting through
shape using fewer samples data of the target domain. A recent
approach is the Deep Reconstruction Classification Network
(DRCN) [11]. The DRCN jointly learns a shared encoding
representation for the digits classification task. Inspired by
the DRCN approach, our method is also based on a two-step
learning domain adaptation approach, but different from it,
we used the learned encoding for a regression problem solu-
tion in the faces domain.

2. METHODOLOGY

Let Dsource be a large set of labeled images like human faces
dataset, and Dtarget be a set with a small number of labeled
samples, e.g., dog’s face. Our methodology has been designed
to detect landmarks in both Dsource and Dtarget domains.
Our formulation is based on a two-step learning approach,
wherein the first step it learns to reconstruct images from
Dtarget using an unsupervised strategy and in the second step
it solves a regression problem in a supervised way predict-
ing the coordinates of the landmarks in faces from Dsource.
Figure 1 illustrates the whole process.

The reconstruction and detection steps rely on the network
genc(·) that learns to encode discriminative features of faces
on different domains and tasks. This function plays a key
role in building a model capable of reconstructing faces and
detecting landmarks.

Reconstruction. Let ui ∈ Dtarget be the i-th unlabeled
image of an animal. After encoding the face features using
genc(ui), we apply a decode function gdec(·) in order to cre-
ate an output gdec(genc(ui)) as close as possible to ui.

In other words, we train the network to minimize the loss
function:

Lrec =
1

n

n∑
i=1

‖ui − gdec(genc(ui))‖2, (1)

where n is the number of images in Dtarget with no annota-
tions, because this step does not require labeled data.

Landmark detection. In the second step, we apply a su-
pervised approach to learn to detect landmarks on faces using
annotated data. Let xi ∈ Dsource be the i-th image of a per-
son and yi ∈ R6 be the image coordinates of the landmarks,
i.e., eyes and nose.

Algorithm 1 Two-step learning for landmark detection.
1: Labeled dataset: Dsource = {(xi,yi)}mi=1

2: Unlabeled dataset: Dtarget = {uj}nj=1

3: for each e < totalEpoch do
4: for each batcht ∈ Dtarget and batchs ∈ Dsource do
5: ForwardUnsupervised(batcht)
6: ComputeReconstructionError: Lrec(batcht)
7: UpdateWeights of gdec and genc
8: ForwardSupervised(batchs)
9: ComputeRegressionError: Lreg(batchs)

10: UpdateWeights of greg and genc
11: end for
12: end for

In our approach, the supervised branch of our architecture
uses the representation learned in the unsupervised step for
feeding the supervised the regression function greg(·). The
regression function learns the coordinates of each landmark
by computing the error between the ground truth yi and the
prediction greg(genc(xi)) as:

Lreg =
1

m

m∑
i=1

MAE (yi − greg(genc(xi))) , (2)

where m is the size of the annotated set and MAE is the
mean absolute error between two vectors of size k, i.e.,
MAE(a,b) = 1

k

∑k
i=1 |ai − bi|.

In our two-step learning, we address the lack of annotated
data in the target domain. Algorithm 1 depicts the learning
loop. Instead of starting the learning from random weights,
we use the patterns learned from a reconstruction task. These
patterns help to leverage the landmark detection when solv-
ing the regression in a supervised way but in a different do-
main. Thanks to this strategy, we can extract robust features
by hallucinating face features of datasets with a few anno-
tations. Our hypothesis is grounded in the idea that we can
learn a function that maps similar features in both domains.
Thus, with this mapping, we can simultaneously perform the
regression and reconstruction tasks and simultaneously learn
how to detect landmarks in the target domain.

Unlike DRCN [11] that updates the weights of a clas-
sification net using all labeled batches and then adjusts the
encoder weights in the reconstruction with all unlabeled
batches, our approach updates the weights of the reconstruc-
tion and regression nets for each batch intercalating both
steps. This fact plays a key role in the development of a
robust and flexible strategy that can work with unlabeled data
in the target domain or a small collection of annotations.

3. EXPERIMENTS

Datasets. In our experiments, the labeled data are from hu-
man faces of the Keggle [12]. For the target domain, i.e., an-
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Fig. 1. Illustration of our two-step learning with the supervised (regression) and the unsupervised steps. In the first step, we
encode the face features of a unlabeled image ui using genc network. Then we apply a decode function to reconstruct the input,
i.e., gdec(genc(ui)). In the second step, we feed a regression function greg that learns the coordinates of each landmark by
estimating the error between the ground truth yi and the prediction greg(genc(xi)).
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Fig. 2. (a) ROC curve of our method and the Interspecies using different numbers of labeled images of the target domain (from
10 to 1,000 images). Larger AUC means better performance. (b) Precision of the predicted landmarks using with 1,000 of
labeled images. (c) Qualitative results for cats, dogs, and horses training our method with 100 of labeled images.

imal faces, aside from dataset of cat faces [13], we also eval-
uated our approach on dogs faces [14] and horse faces [2].
All datasets have the faces annotated with 3 landmarks: left
and right eyes, and nose. We used the Euclidean distance as
evaluation metric for the location predictions and margin of
error of 10% of the image size (in the dataset we used in the
experiments correspondes to a radius of 3 pixels) to classify
a detection as correct. We performed data augmentation in
source and target datasets by applying a random rotations in
the images from −30 to 30 degrees. Moreover, we applied
translations and noise in the target set to ensure robust results
in the reconstruction step.

Baselines. We compared our method with a standard con-
volutional network (ConvNet) for supervised landmark de-
tection. This ConvNet has the same architecture of our
supervised net and it was trained on the target domain with
labeled data. We also pit our detector against the state-of-
the-art method on landmark detection for faces in different
topologies called Interspecies [2]. We used the code provided
by the authors with our configuration of training and test data
ranging from 10 to 1,000 images.

Implementation. The encoder genc(·) has five convolution
layers with 3×3 filters and padding 1×1: 300 filters in conv1,
250 filters in conv2, 200 filters in conv3, 150 filters in conv4,
and conv5 with 100 filters; two pooling layers 2× 2 after the
first and second convolutional layers (pool1 and pool2) and
a fully connected layer (fc4) with 500 neurons. The decoder
net genc is the mirror image of the encoder architecture. In
the regression, we feed a fully connected layer (fc-regressor)
with the output from the genc net. We used ReLU in all
hidden and output layers and hyperbolic tangent activation
for the regression layer. We used a learning rate equals to
3 × 10−4 for point detection and the reconstruction. In the
training, we ran 500 epochs and used a batch size equals to
128. The size of all input images is 32× 32. All source code
and experimental data will be publicly available.

3.1. Comparison against the state of the art

We compared our work with the Interspecies method pro-
posed by Rashid et al. [2], the current state of the art in detect-
ing landmarks on animal faces. In the experiments, we varied
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Fig. 3. ROC curve varying the number of labeled data for CAT, DOG and HORSE datates. Our method (blue curve) was
superior than ConvNet trained with samples from target domain (red curve) and source domain (green curve).

Table 1. Area Under the Curve (AUC) for ROC of precision
for our method and a ConvNet trained with labeled data from
a human faces dataset. Best in bold.

Method
Dataset (AUC)

CAT DOG HORSE

OURS 86.3 82.3 79.97
CONVNET 77.33 81.10 76.65

the size of training from 10 to 1,000 images.
Figure 2 (a) shows the Receiver Operating Characteristic

(ROC) of our method and the Interspecies. On can clearly see
that our method outperformed the Interspecies method. Our
method obtained 83% of the precision while the Interspecies
method obtained 73.2% of correct detections. We also evalu-
ate prediction precision for each landmark. As one can see in
the bars of Figure 2 (b), our method has larger precision for
all the landmarks, i.e., nose and eyes locations.

From these results, we can draw the following observa-
tions. First, even when there is no labeled data from the target
domain, our method performs better than Interspecies. The
experiments show that our approach can hallucinate features
by adapting learnt features in a reconstruction task from a dif-
ferent domain. Second, whenever available, our method can
use few annotated data to leverage the detection of landmarks
reducing the demand of large volume of annotated data.

3.2. Ablation analysis

For a more detailed performance assessment, we also evalu-
ate our method in two experiments: in the first experiment we
used only unlabeled data from the target domain and labeled
data from the source domain; in the second experiment, we
gradually increased the size of labeled dataset from the target
domain starting from 5 up to 100 images.
Only unlabeled data from the target domain. Table 1

shows the area under the curve of the ROC curves for our
model trained with no labeled data from target domain and a
ConvNet trained with source domain only. When comparing
with ConvNet, our method improved the detection in all three
datasets. Together these results show that the hypothesis of
leveraging feature from one domain to another holds for de-
tecting landmarks on faces.
Using a few of labeled data from the target domain. In this
experiment, we use some labeled data from the target domain
in the regression step. The idea is to analyze the performance
of our approach when using a small number of labeled data
from the target domain. For each batch, we forward a subset
of labeled data from the target domain and solve the regres-
sion according to the error between the prediction and the
ground truth of the target domain. Then, the network weights
are updated. We used four different number of labeled im-
ages: 0, 10, 50, and 100. Figure 3 shows the precision for
the three datasets. It is noteworthy the rapid increase in the
precision of our method and the superior performance (larger
AUC). This fact can be explained by the transfer learning
from the source domain and the features learning in the facial
reconstruction in the target domain.

4. CONCLUSION

We presented a novel method for detecting landmarks on
faces in different domains such as human and animal faces.
Our method is based on a two-step learning (supervised and
unsupervised) that reduces the need for a large annotated
data. The experiments show that our method performed bet-
ter than the state-of-the-art method even when there is a small
collection of annotated data from the target domain.
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