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Abstract—The main scope of this paper is to show how
tools from quantum mechanics, in particular the Schroedinger
equation, can be used to construct an adaptive transform suitable
for signal and image processing applications. The proposed
dictionary is obtained by considering the signal or image as
a discrete potential in Schroedinger equation, further used to
construct the Hamiltonien operator. In order to illustrate its
practical interest in signal and image processing, we provide
denoising results in the case of signal-dependent noise, which is
the noise type the most adapted to the proposed approach.

Index Terms—adaptive signal and image representation, de-
noising, quantum mechanics.

I. INTRODUCTION

Transforming digital signals or images in other represen-
tations than time or space is a common approach in number
of applications such as image compression, restoration, recon-
struction, denoising or more recently compressed sensing. A
large variety of pre-designed dictionaries exists, including fre-
quency (e.g., Fourier or DCT) or time-frequency (e.g., wavelet
or curvelet) transforms. Despite very interesting results, such
fixed transforms suffer from a lack of generality and are often
only adapted to a particular class of images or signals. To
overcome this issue, dictionaries learned from a set of training
signals or images have been largely explored over the last
decade [1]. They have been shown to be very efficient in
sparsity driven applications, given their potential in sparsifying
signals or images (e.g., image denoising [2]).

In this paper, we propose a new way of generating an
adaptive basis from the signal or image itself (without the need
of a training set as it is usually the case in dictionary learning),
by exploiting principles of quantum mechanics. Note that
several attempts of translating quantum principles in image or
signal processing applications already exist in the literature,
such as the seminal work in [3]. More recently, the interest of
quantum mechanics in object extraction from optical images
has been shown in [4] and in pulse-shaped signal analysis in
[5]. An alternative literature on designing image processing
algorithms adapted to quantum computers also exists, but is
out of the scope of this paper.

The starting point of our framework is a discrete version of
the Schroedinger equation for a quantum particle in a potential,
where the potential is represented by the signal samples or
the pixel values. We use a basis of wave functions, i.e.,
stationary solutions of the Schroedinger equation, as adaptive
basis for signal or image representation. Its interest is that

the quantum basis automatically uses higher frequencies to
describe low potential values. We therefore show that it is
well suited to signal-dependent noise (e.g., Poisson), where
low signal values need to keep high harmonics, while higher
values need more denoising. We note that there was a recent
attempt in using quantum mechanics in this context in [6], [7].
Although there are similarities between the two approaches,
our method is different: the authors in [6], [7] start from a
continuous mathematical representation of the signal, and the
discretization only occurs at the end of the process, giving a
different basis set with different parameters to tune.

In our proposed framework, both the energy of the wave
functions and Planck’s constant can be controlled, giving two
parameters to tune ensuring flexibility in applications such
as denoising. The method can be applied to any signal or
image. In the presence of noise, quantum localization effects
are present that may affect the denoising procedure, and we
show how to avoid this problem by a suitable smoothing of
the potential.

The interest of the proposed adaptive transform is illustrated
in this paper through a denoising application in the presence
of signal or image-dependent noise. We show through specific
examples that our method is more efficient than standard
denoising through total variation regularized reconstruction
methods. We emphasize nevertheless that beyond these appli-
cations to specific signals, this paper also shows the interest of
quantum mechanics techniques in signal and image processing
in general and more particularly in constructing adaptive dic-
tionaries. These adaptive basis could certainly find an interest
in other applications than denoising and for other types of
signal and images than those considered in this work.

The remainder of the paper is organized as follows. Sec-
tion II presents a brief summary of the quantum mechanics
principles used in this work. Section III gives the details of
the adaptive transform design and its application to denoising.
Simulation results are provided in Section IV and concluding
remarks are finally reported in Section V.

II. BASICS OF QUANTUM MECHANICS

In quantum mechanics, a (non-relativistic) particle in a po-
tential is described by a wave function ψ, whose absolute value
|ψ|2 corresponds to the probability of presence of the particle.
The normalization of probability implies that

∫
|ψ|2 = 1, and

the wave function belongs to the Hilbert space of functions
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with bounded integrals (L2 norm). The wave function obeys
the Schroedinger equation, whose stationary solutions for a
given energy E correspond to the equation:

− ~2

2m
∇2ψ = −V (r)ψ + Eψ (1)

where ~ is the Planck constant and m is the mass of the
particle in the potential V . It can also be written Hψ = Eψ
where H is the Hamiltonian operator. If the space is discretized
with a grid of N points, (1) has in general N solutions which
form a basis of the Hilbert space.

III. QUANTUM SIGNAL AND IMAGE PROCESSING

A. Adaptive transform design

In order to apply these tools to signal processing, we
replace in (1) the potential V by the image pixels’ values
(or the samples’ values in the case of 1D signals). The
proposed approach works in a discretized space, by replacing
the Laplacian operator by its standard discrete version based
on the numerical definitions of the gradient operator, given
hereafter for an image x ∈ RN×N :

(∂hx)(i, j) = x(i+ 1, j)− x(i, j) if i < N

(∂vx)(i, j) = x(i, j + 1)− x(i, j) if j < N

where ∂h and ∂v are the horizontal and vertical gradients.
Note that the boundary conditions considered for the gradients
were a simple zero padding of the image.

The wave functions ψ verifying (1) can be numerically
computed by calculating the eigenvectors of the Hamiltonian
operator H . Given the discrete version of the Laplacian
operator introduced above and replacing the potential V by
the pixels of image x, the matrix H ∈ RN2×N2

is defined as:

H(i, j) =


x(i, j) + 4 ~2

2m for i = j,

− ~2

2m for i = j ± 1,

− ~2

2m for i = j ±N,
0 otherwise.

(2)

As explained previously, zero padding is used to consider
the boundary effects. As a consequence, specific coefficients of
matrix H do not follow the rule in (2). Specifically, H(i, j) =

x(i, j)+2 ~2

2m for i = j and i ∈ {1, ..., N,N2−N+1, ..., N2},
H(i, j) = x(i, j)+3 ~2

2m for any i = j other than the previous
set and i mod N2 ∈ {0, 1} and H(i, i+1) = H(i+1, i) = 0
for any i multiple of N .

The basis formed by the N2 eigenvectors, denoted by
ψi ∈ RN2×1, represents the adaptive transform proposed in
this work. We consider in the following that these basis vectors
are ordered from the highest to the lowest corresponding
eigenvalues. The basis vectors ψi are oscillating functions,
similar to the Fourier or wavelet basis, but with a local
frequency given by the local value of

√
2m(E − V )/~. For a

given value of energy E, wave vectors with energy below E
will use a larger range of frequencies to probe regions with low
potential values than the ones corresponding to high potential

values. The precise relationship between E − V and the local
frequency depends on the parameter ~2/2m, which in our case
is a free parameter to be tuned. In quantum mechanics, it
corresponds to the ratio of Planck’s constant to the mass of
the particle. For very large values of ~2/2m, the difference
between high and low potential values becomes smaller and
smaller, and the wave vectors basis becomes closer and closer
to the usual Fourier basis.

B. Application to denoising

Most denoising methods consist in three steps: projecting
a signal or an image onto a dictionary able to separate the
useful information from the noise, followed by a thresholding
(e.g., hard or soft) procedure in the transformed domain and
finally by the recovery of the denoised signal or image by
back projecting the modified coefficients into the time or space
domain. In this work, we follow this framework to show the
interest of the adaptive basis formed by the basis vectors ψi
in denoising signals or images. As explained previously, the
shape of the vectors ψi depends on the value of ~2

2m , but is
also influenced by the amount of noise degrading the signal or
the image. More precisely, the basis vectors tend to spread out
in time (or space) for slowly varying signals or images, and,
on the contrary, contract in the presence of noise. This is due
to a subtle quantum effect called Anderson localization (which
justified a Nobel prize in physics in 1977): wave functions in
a disordered (i.e., noisy in our case) system are in general
exponentially localized in a specific location of the potential
due to destructive interference [8]. To mitigate this effect, the
Hamiltonian matrix is computed from a smoothed version of
the noisy signal or image. This smooth version is computed
in this work by a simple convolution with a Gaussian kernel
whose standard deviation is denoted by σ. The denoised signal
or image is finally reconstructed as follows:

x̂ =

N2∑
i=1

αiψiτi, (3)

with

τi =


1 for i ≤ s,

1− i−s
ρ for i > s and for 1− i−s

ρ > 0,

0 otherwise.

(4)

αi are the coefficients representing the image x in the
proposed adaptive basis. s and ρ are two hyperparameters
that define the thresholding function used within our denoising
algorithm.

Algorithm 1 summarizes the steps of the denoising al-
gorithm aiming at illustrating the practical interest of the
proposed adaptive transform.

IV. SIMULATION RESULTS

In this section, we illustrate the proposed adaptive transform
and its interest in denoising through three simulations: one
synthetic signal, one synthetic image and a cropped version of
Lena. In order to better emphasize the interest of the proposed
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Algorithm 1: Denoising algorithm using the proposed
adaptive transform.

Input: x, ~2

2m , s, ρ, σ

1 Compute a smooth version of x by Gaussian filtering
2 Form the Hamiltonian matrix H based on the smoothed

version of x using (2)
3 Calculate the eigenvectors ψi of H
4 Compute the coefficients αi by projecting x onto the

basis formed by ψi
5 Threshold the coefficients αi and recover the denoised

signal or image following (4) and (3)
Output: x̂

framework, the synthetic signal and image are generated so
that they contain low frequencies in the regions containing
high samples or gray values, and reciprocally high frequencies
for low potential regions. Two classes of simulations have
been performed. Within the first class, the signal and the
images were corrupted by Poisson noise. The samples’ and
pixels’ values have been adjusted so that the SNR was as
close as possible to 15 dB. Note that in all the simulations,
the SNR was computed by considering the noise as the
difference between the noisy and clean signals or images.
Within the second set of experiments, additive Gaussian noise
was considered, with the variance pixel-wise (or sample-wise)
related to the gray level or signal amplitude. The power of
the noise was adjusted so that the signal to noise ratio (SNR)
was 15 dB. The noiseless and respectively noisy versions of
these signal and images are shown in Fig. 2. Note that only
the noisy and denoised signal and images corresponding to
Poisson noise are shown herein for illustration purpose. The
visual impression of the signal and images from the second
experiment were very similar.

An example of eigenvector extracted from the proposed
adaptive basis is shown in Fig. 1. It has been computed, as
suggested by Algorithm 1, from a blurred version of the noisy
signal in in Fig. 2(d). Its corresponding eigenvalue is illustrated
by the dashed line superimposed to the blurred signal in Fig.
1. As expected, we remark that the lower the signal values,
the higher the local frequency of the eignevector. Moreover,
we observe that the signal regions larger than the eigenvalue
are not captured by the eigenvector.

The main objective of our work was to introduce an original
way of revisiting image/signal processing techniques with
quantum physics tools, rather than finding a denoising method
outperforming the state-of-the art methods in the field. How-
ever, the interest of the proposed adaptive basis in denoising
was evaluated compared to an existing method formulating
the denoising as an inverse problem. The latter, denoted as
”TV”, takes into account explicitly the Poisson noise and uses
the total variation semi-norm to regularize the solution [9].
For all the methods, the hyperparameters have been manually
tuned to provide the best peak signal to noise ratios (PSNR).
In addition to the PSNR, the structure similarity (SSIM) [10]
and the SNR were used to evaluate the quality of denoised
images compared to the ground truth.

Fig. 1. Up: blurred version of the noisy signal in Fig. 2(d), down: eigenvector
corresponding to the eigenvalue illustrated by the dashed line.

The superiority of the denoising method based on thresh-
olding the coefficients representing the noisy signal or image
in the proposed adaptive basis can be qualitatively appreciated
from the results in Fig. 3 and quantitatively from the measures
in Table I. As expected, the total variation regularization
provides reasonably good results for Lena image, but fails
in recovering the synthetic signal and image because of their
non piece-wise constant nature. In all the cases, although the
data are not displayed in this paper, we checked that denoising
using the proposed adaptive basis also outperformed classical
filtering in the Fourier domain.

TABLE I
QUANTITATIVE DENOISING RESULTS.

Data Noise Method PSNR (dB) SNR (dB) SSIM

Signal
Poisson TV 24.11 17.91 NA

Proposed 30.06 24.73 NA

Gaussian TV 23.52 17.44 NA
Proposed 27.80 22.69 NA

Image
Poisson TV 27.85 19.27 0.81

Proposed 33.28 24.80 0.94

Gaussian TV 27.85 19.27 0.82
Proposed 32.45 24.04 0.92

Lena
Poisson TV 27.98 23.98 0.80

Proposed 28.69 24.70 0.82

Gaussian TV 27.07 22.53 0.69
Proposed 32.45 24.04 0.92

V. CONCLUSIONS

This paper presented an original method of generating
an adaptive transform for signal and image applications,
inspired from concepts of quantum mechanics. More precisely,
the proposed transform consists in the eigenvectors of the
Hamiltonian operator. The interest of such an adaptive basis
was shown through a denoising application in presence of
Poisson noise. As a perspective of this work, an interesting
research track is to extend the study to other signal and
image reconstruction applications, such as deconvolution or
super-resolution. Moreover, the computational time could be
mitigated by an efficient method of computing the eigenvectors
from the Hamiltonian matrix.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. (a-c) Clean signal and images, (d-f) Corresponding signal and images degraded by Poisson noise.

(a) (b) (c)

(d) (e) (f)

Fig. 3. (a-c) Denoising results for the Poisson noise experiments obtained (a-c) using total variation regularization and (d-f) using the proposed approach.
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