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ABSTRACT

Micro-expression (ME) is a special type of human expres-
sion which can reveal the real emotion that people want to
conceal. Spontaneous ME (SME) spotting is to identify the
subsequences containing SMEs from a long facial video. The
study of SME spotting has a significant importance, but is also
very challenging due to the fact that in real-world scenarios,
SMEs may occur along with normal facial expressions and
other prominent motions such as head movements. In this
paper, we improve a state-of-the-art SME spotting method
called feature difference analysis (FD) in the following two
aspects. First, FD relies on a partitioning of facial area into
uniform regions of interest (ROIs) and computing features of
a selected sequence. We propose a novel evaluation method
by utilizing the Fisher linear discriminant to assign a weight
for each ROI, leading to more semantically meaningful ROIs.
Second, FD only considers two features (LBP and HOOF)
independently. We introduce a state-of-the-art MDMO fea-
ture into FD and propose a simple yet efficient collaborative
strategy to work with two complementary features, i.e., LBP
characterizing texture information and MDMO characteriz-
ing motion information. We call our improved FD method
collaborative feature difference (CFD). Experimental results
on two well-established SME datasets SMIC-E and CASME
II show that CFD significantly improves the performance of
the original FD.

Index Terms— Micro-expression, spotting features, fea-
ture collaboration, weighted ROIs

1. INTRODUCTION

Facial expression is an important manner for human commu-
nication and information transfer. It can be notably classi-
fied into two types: macro- and micro-expressions. Macro-
expressions are the normal expressions that we see everyday.
In contrast, micro-expressions (MEs) are short, subtle facial
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Fig. 1. Micro-expression spotting: tagging possible micro-
expression subsequences from a long video sequence.

movements that are not easily perceived by ordinary people,
but they indicate the real emotion that people cannot suppress
or fake.

Research on micro-expression started from 1966 when
Haggard et al. [1] proposed the concept of ME. In 1969, Ek-
man et al. [2] reported the finding of ME in an interview
video, which was later considered as the critical clue for the
patient’s lie. Since then, people have realized the potential of
ME in many applications, including education, mental illness
diagnosis, airport security etc.

ME analysis is valuable, but also challenging. A ME usu-
ally lasts for very short time, mostly less than 0.5 seconds [3].
This means that MEs only exist in a few frames in normal
camera videos. Moreover, ME movement has low strength
and often shows in only part of the facial regions. These two
significant characteristics — short duration and subtle move-
ment — make ME analysis difficult.

As an essential and necessary preprocessing step for ME
analysis, ME spotting is to identify subsequences of frames
from a given long video that contain MEs (Figure 1). Most
existing spotting methods (e.g., [4, 5]) are based on posed
MEs. It is well known that spontaneous MEs are much more
difficult for spotting than the posed MEs, because ME is con-
sidered involuntary and difficult to disguise; see a detailed
discussion in [6]. So far only a few works address sponta-



neous ME spotting; see [6] for a summary. In recent years,
benefiting from the progress of technical advances in acqui-
sition hardware, well-established spontaneous ME datasets
[7, 8, 9] were released, providing essential data for research.

A state-of-the-art spotting technique called feature differ-
ence analysis (FD) was proposed in [6], which is an exten-
sion of the first spontaneous ME spotting method [10]. Given
a long facial video sequence, FD divides the facial region of
each frame into equal-sized regions of interest (ROIs). Then,
the local binary pattern (LBP) histogram feature [11] or the
histogram of optical flow (HOOF) feature [12] in each ROI
is extracted. For each frame, a subsequence centered at this
frame with a fixed length is formed, and the feature differ-
ence of this subsequence is defined as the distance of this
frame’s feature and the average feature of the first and the
last frames of this subsequence. Finally, after removing back-
ground noise, a threshold is used to tag the possible peak
frames and subsequences.

FD achieves superior performance among existing spon-
taneous ME spotting methods including [13, 14]. However,
it still has space for improvement. First, the contribution
of each facial ROI is considered equally, which is unreason-
able. Since MEs are often local, different regions may have
different contributions. Second, FD only considers the LBP
and HOOF features independently. A collaboration of differ-
ent complementary features may achieve better performance.
Based on these observations, in this paper, we propose an
improved FD method called collaborative feature difference
(CFD). The main contributions are:

• We propose a novel evaluation method to compute the
contribution of each ROI by utilizing the Fisher linear
discriminant, such that the weighted ROIs are more se-
mantically meaningful.

• We introduce the state-of-the-art MDMO feature [15]
and propose a collaborative strategy using both the LBP
and MDMO features: LBP characterizing texture infor-
mation and MDMO characterizing motion information,
such that they complement each other and the collabo-
rative strategy improves the spotting performance.

The paper is organized as follows. We describe our method
in Section 2. Experiments and discussions are presented in
Section 3 and conclusion is in Section 4.

2. CFD METHOD

2.1. Weighted regions of interest

Given a long facial video, for ME spotting analysis, the fol-
lowing preprocessing steps are performed first, including fa-
cial region detection, face alignment and region of interest di-
vision. Discriminative response map fitting (DRMF) method
[16] is used to detect the facial landmarks and determine the
facial region. Then, similar to [6], three points (two inner
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Fig. 2. The division of ROIs and evaluated weights.

eye corners and the nasal spine point) are used to align the
face and divide the area into equal-sized regions of interest
(ROIs), as illustrated in Figures 2(a) and 2(b).

This division method is consistent with subtle and local
movement of micro-expressions. However, due to the local
nature of ME, it is unreasonable to assume that each ROI has
an equal contribution. We instead evaluate a suitable weight
for each ROI to make them more semantic.

Given a labeled spontaneous ME dataset1, we consider
the two-class classification problem {Y es,No}, where Y es
means having MEs and No for not having MEs in a sample
video clip. Denote by Ri the ith ROI, i = 1, 2, · · · , 36. For
each ROI Ri, we collect all the feature values2 computed in
it for all video clips with the Y es label, and denote this col-
lection as a set Xyes(i) = {xjyes(i)}. Similarly we collect
all feature values Xno(i) = {xjno(i)} computed in Ri for all
video clips with the No label.

We estimate a weight for each ROI Ri based on the
following key observation. If the feature sets Xyes(i) and
Xno(i) contributed by Ri are good indicators for ME spot-
ting, the weight for Ri should be large and vice versa. We
evaluate the goodness of the feature sets Xyes(i) and Xno(i)
by adopting the Fisher linear discriminant. Let uyes(i) and
uno(i) be the mean vectors of Xyes(i) and Xno(i) respec-
tively:

uyes(i) =
1

#Xyes(i)

∑
xyes∈Xyes(i)

xyes (1)

uno(i) =
1

#Xno(i)

∑
xno∈Xno(i)

xno (2)

where #X is the cardinality of the set X . We further define
the within-class variances for Xyes(i) and Xno(i) as

s2yes(i) =
∑

xyes∈Xyes(i)

(xyes − uyes(i))2 (3)

s2no(i) =
∑

xno∈Xno(i)

(xno − uno(i))2 (4)

1In our experiment, we use half of the CASME II dataset for evaluating
the ROIs’ weights, and use the other half and the SMIC-E dataset for testing
the spotting performance.

2The extracted features are presented in Section 2.2.



The weight for the ROI Ri is then defined as

wi =
(uyes(i)− uno(i))2

s2yes(i) + s2no(i)
(5)

The higher the weight wi is, the more significant the ROI Ri

is. Figure 2 illustrates the evaluated weights of all ROIs.

2.2. Feature extraction

In ME analysis, appearance-based texture features and optical-
flow-based motion features are the two main classes of ME
features. In our study, we select LBP [11] and MDMO [15]
as representative features from these two classes.

Local binary patterns (LBP) and its variants are widely
used in many computer vision applications (e.g., [17]) includ-
ing ME spotting [6]. LBP labels the pixels of an image region
by thresholding the neighborhood of each pixel and generat-
ing binary numbers. LBP is a powerful feature for texture
classification due to its discriminative power and computa-
tional simplicity. We implement the same LBP feature in [6]
which extracts a normalized 59-dimensional LBP feature for
each ROI.

LBP is a good texture descriptor. However, micro-
expression is a facial movement. Naturally, we can use
optical-flow based motion features as a complement to LBP
for characterizing the motion information. Main directional
mean optical-flow (MDMO) is a state-of-the-art ME fea-
ture [15]. MDMO selects the main direction of the optical
flow histogram of each ROI, represented by the magnitude
and orientation. MDMO can maximize the subtle movement
of micro-expression and has been demonstrated to achieve
significant performance on ME recognition. For implementa-
tion detail of MDMO, please refer to [15].

Due to their complementary nature, we extract both the
LBP and MDMO features, and propose a collaborative strat-
egy to leverage their advantages (see Section 2.4).

2.3. Computation of feature difference contrast

The original FD method [6] only considers the LBP and
HOOF features independently. In our work, we adapt the FD
method by incorporating both LBP and MDMO features as
follows.

For the ith frame of a given facial video clip, the spotted
sequence vi is formed with a fixed lengthN , which starts with
the (i− k)th frame and ends with the (i+ k)th frame, where
k = b(N − 1)/2c denotes the half length of the spotted se-
quence. Thus, the first and last k frames of the raw video
clip are not used for generation of subsequences. The fea-
ture difference between the ith frame and the starting/ending
frames can be used to describe the changes of features within
vi. Intuitively, with higher feature difference value, vi is more
likely to contain micro-expressions.

The feature difference F i
j of the jth ROI in vi is computed

as:

F i
j =

1

2
wj

(
Dis(f ij , f

i−k
j ) +Dis(f ij , f

i+k
j )

)
, (6)

where f ij denotes the jth ROI feature vector of the ith frame
which includes 59-dimensional histogram of LBP and 2-
dimensional MDMO feature (ρij , θ

i
j). Dis(f1, f2) denotes

the distance function between the two feature vectors, where
Chi-squared (χ2) distance is used for LBP and Euclidean
distance is used for MDMO.

Compared to the original FD method [6], we use two fea-
ture differences in F i

j (see Eq.(6)):

• Instead of using the average feature vector of f i−kj and
f i+k
j to compute the distance, which may lose useful

difference information, we compute the two feature dif-
ferences separately which are then averaged afterwards.
Our experimental results show that our adaption better
preserves feature differences among these frames.

• We incorporate the weights evaluated in Section 2.1 to
make F i

j more discriminative.

After obtaining the feature difference of each ROI in vi,
we follow [6] to apply the post-processing steps. To maximize
the effect of micro-expression, F i

1, F
i
2, · · · , F i

36 are sorted in
descending order as F i

j1
, F i

j2
, · · · , F i

j36
. Then the average

value of the top M ROIs with larger feature differences is
computed. After relatively local peaks and background noise
removal, the final feature difference contrast Ci of vi is ex-
pressed as:

F i =
1

M

M∑
m=1

F i
jm (7)

Ci = F i − 1

2
(F i−k + F i+k) (8)

where M = 12 (i.e., N
3 ) is used. Through the computation of

feature difference, the ME characteristic of each spotted video
is obtained for the downstream peak detection (see Section
2.4).

2.4. Collaborative peak detection

In the original FD method [6], the peak in the raw video is
detected by the following threshold value T :

T = Cmean + p(Cmax − Cmean) (9)

where Cmax and Cmean are the max and the mean values of
C in the whole video, 0 < p < 1 is a parameter to determine
the threshold level. If Ci ≥ T , then vi is considered as a
micro-expression sequence.

In our approach, we propose a simple yet effective collab-
orative strategy which combines LBP and MDMO features to
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Fig. 3. There are two true micro-expression clips (green
shades) in the video sequence. With a high threshold level,
LBP and MDMO can each spot one of them, while the col-
laborative strategy can spot both.

leverage both their advantages. Denote the feature difference
contrast computed by each feature as Ci

LBP and Ci
MDMO,

and the threshold as TLBP and TMDMO with the same thresh-
old level p. The collaborative rule is expressed as:

labeli =

{
1, Ci

LBP >= TLBP || Ci
MDMO >= TMDMO

0, otherwise
(10)

where labeli indicates whether vi is a micro-expression se-
quence or not. Figure 3 illustrates the mechanism of the col-
laborative strategy.

3. EXPERIMENTS

3.1. Experimental settings

We implement the proposed CFD method using MATLAB
and the source code is available3. For a fair comparison be-
tween the state-of-the-art FD method [6] and our proposed
CFD method, we follow [6] to use the same datasets and the
same evaluation metric, which are briefly summarized below.

The SMIC dataset [9] was extended to include more
frames before and after the ME span. The three new subsets
of extended SMIC are denoted as SMICE-HS, SMICE-VIS
and SMICE-NIR. The original CASEME II dataset [8] al-
ready provided long video clips that include extra frames
before and after ME span, and then can be directly used. We
randomly select half of the CASEME II dataset for determin-
ing the weights of ROIs and test the performance of FD and
CFD on the other half and SMIC dataset.

After peak detection, if the spotted peak is located within
the frame range [onset− (N − 1)/4, offset+(N − 1)/4] of a
labeled ME clip, it is considered as one true positive ME; oth-
erwise, it is a false positive ME. In [6], N = 9, 9, 33, 65 for
SMICE-VIS, -NIR, -HS and CASME II, respectively. The
true positive rate (TPR) is the percentage of frames of cor-
rectly spotted MEs, divided by the total number of ground
truth ME frames in the dataset. The false positive rate (FPR)
is the percentage of incorrectly spotted frames, divided by the

3http://cg.cs.tsinghua.edu.cn/people/˜Yongjin/
Yongjin.htm
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Fig. 4. The ROC curves of FD (evaluated on LBP and HOOF
independently) and CFD (ours) on the datasets of SMIC-E-
HS, SMIC-E-VIS, SMIC-E-NIR and CASEME II.

total number of non-ME frames in the dataset. The perfor-
mance of spontaneous ME spotting is evaluated by the ROC
curves with TPR as the y axis and FPR as the x axis.

3.2. Results

We evaluate the FD method (which only considers using LBP
and HOOF independently [6]) and the proposed CFD method.
Their ROC curves are shown in Figure 4. The values of
area under the ROC curve (AUC) are summarized in Table 1,
showing that (1) in CFD, the combination of ROIs’ weights
and collaborative strategy achieves the best performance, i.e.,
better than LBP+ROIs’ weights and MDMO+ROIs’ weights,
and (2) CFD is significantly better than FD.

Method SMICE-HS SMICE-VIS SMICE-NIR CASME II
FD(HOOF) 69.41% 74.90% 73.23% 64.99%
FD(LBP) 83.32% 84.53% 80.60% 92.98%
LBP+W 95.85% 92.15% 92.57% 92.81%

MDMO+W 94.37% 92.67% 90.68% 93.56%
CFD 97.06% 94.17% 93.89% 94.19%

Table 1. AUC values of FD and CFD methods with different
combinations (W is for ROIs’ weights) on four datasets.

4. CONCLUSION

In this paper, we propose an efficient CFD method for spon-
taneous ME spotting by leveraging the ROIs’ weights and a
feature collaborative strategy. Experimental results on four
datasets SMICE-HS, SMICE-VIS, SMICE-NIR and CASME
II show that CFD achieves a significantly better performance
than the state-of-the-art FD method.



5. REFERENCES

[1] Ernest A Haggard and Kenneth S Isaacs, “Micromo-
mentary facial expressions as indicators of ego mech-
anisms in psychotherapy,” in Methods of Research in
Psychotherapy, pp. 154–165. Springer, 1966.

[2] Paul Ekman and Wallace V Friesen, “Nonverbal leakage
and clues to deception,” Psychiatry, vol. 32, no. 1, pp.
88–106, 1969.

[3] Wen-Jing Yan, Qi Wu, Jing Liang, Yu-Hsin Chen, and
Xiaolan Fu, “How fast are the leaked facial expressions:
The duration of micro-expressions,” Journal of Nonver-
bal Behavior, vol. 37, no. 4, pp. 217–230, 2013.

[4] Senya Polikovsky, Yoshinari Kameda, and Yuichi Ohta,
“Facial micro-expressions recognition using high speed
camera and 3d-gradient descriptor,” in Crime Detection
and Prevention (ICDP 2009), 3rd International Confer-
ence on. IET, 2009, pp. 1–6.

[5] Matthew Shreve, Sridhar Godavarthy, Dmitry Goldgof,
and Sudeep Sarkar, “Macro-and micro-expression spot-
ting in long videos using spatio-temporal strain,” in
Automatic Face & Gesture Recognition and Workshops
(FG 2011), 2011 IEEE International Conference on.
IEEE, 2011, pp. 51–56.

[6] Xiaobai Li, Xiaopeng Hong, Antti Moilanen, Xiao-
hua Huang, Tomas Pfister, Guoying Zhao, and Matti
Pietikainen, “Towards reading hidden emotions: A com-
parative study of spontaneous micro-expression spotting
and recognition methods,” IEEE Transactions on Affec-
tive Computing, DOI:10.1109/TAFFC.2017.2667642,
2018.

[7] Wen-Jing Yan, Su-Jing Wang, Yong-Jin Liu, Qi Wu,
and Xiaolan Fu, “For micro-expression recognition:
Database and suggestions,” Neurocomputing, vol. 136,
pp. 82–87, 2014.

[8] Wen-Jing Yan, Xiaobai Li, Su-Jing Wang, Guoy-
ing Zhao, Yong-Jin Liu, Yu-Hsin Chen, and Xiaolan
Fu, “CASME II: An improved spontaneous micro-
expression database and the baseline evaluation,” PloS
one, vol. 9, no. 1, pp. e86041, 2014.

[9] Xiaobai Li, Tomas Pfister, Xiaohua Huang, Guoying
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