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ABSTRACT

We present a new method for reconstructing a 4D light field
from a random set of measurements. A 4D light field block
can be represented by a sparse model in the Fourier domain.
As such, the proposed algorithm reconstructs the light field,
block by block, by selecting frequencies of the model that
best fits the available samples, while enforcing orthogonality
with the approximation residue. The method achieves a very
high reconstruction quality, in terms of Peak Signal-to-Noise
Ratio (PSNR). Experiments on several datasets show signif-
icant quality improvements of more than 1dB compared to
state-of-the-art algorithms.

Index Terms— Light field, reconstruction, non-regular
sampling, sparsity.

1. INTRODUCTION

Light field imaging has recently gained in popularity due to
the emergence of acquisition devices and the potential for a
variety of computational photography and computer vision
applications. Nevertheless, existing acquisition devices either
provide a low-resolution light field by multiplexing several
views on a single 2D sensor image, or require capturing mul-
tiple images to generate a high-resolution light field. This lim-
itation goes against industrial needs for increasing image res-
olutions. In parallel, in the field of compressive sensing [1],
it has been shown that it is possible to recover a signal from
only a few samples (or measurements) provided this signal
is sparse in a particular domain. Light field camera architec-
tures have hence been proposed based on compressive acqui-
sition schemes with the goal of overcoming the spatio-angular
trade-off of plenoptic cameras.

Programmable aperture approaches exploit the fast mul-
tiple-exposure feature of digital sensors to sequentially cap-
ture subsets of light rays [2]. The authors in [3] propose in-
stead two compressive acquisition architectures, one exploit-
ing spatial correlations and another exploiting angular corre-
lations. In [4], two attenuation masks are used, one placed at
the aperture and the other one in front of the 2D photosen-
sor. Similarly, a random-coded mask is used in [5] to capture
random linear combinations of angular samples. An architec-

ture using coded projections on the sensor image is described
in [6], where the light field is reconstructed using sparse meth-
ods with an over-complete dictionary learned with K-SVD.
Casting the light field acquisition problem in a compressive
sensing framework requires learning dictionaries well suited
for the data at hand. The dictionary learning problem for light
field compressive sensing has been addressed in [7]: the au-
thors train an ensemble of separable 2D dictionaries corre-
sponding to a reduced union of subspaces (RUS) in which the
input data is supposed to reside. Alternatively, a perspective
shifting based dictionary is defined in [8] to sparsely represent
light fields and two disparity estimation methods are proposed
for the reconstruction of the light field content.

In this paper, we address the problem of recovering a 4D
light field signal from a subset of random measurements. The
random sampling avoids making any further hypotheses. We
exploit the assumption that the light field data is sparse in
the Fourier domain [9], meaning that the Fourier transform
of the light field can be expressed as a linear combination of
a small number of Fourier basis functions. The reconstruc-
tion algorithm therefore searches for these bases (i.e. their
frequencies) which best represent the 4D Fourier spectrum of
the sampled light field. The method is inspired from the Fre-
quency Selective Reconstruction (FSR) approach in [10], but
extended to 4D light fields. The method is further improved
by introducing an orthogonality constraint on the residue in
the same spirit of Orthogonal Matching Pursuit (OMP) [11]
compared to Matching Pursuit. The experimental results
on both synthetic and real contents show that the proposed
method provides a high-quality reconstruction, even with a
very low number of input samples. The improved version
of the algorithm achieves gains of up to 1.9dB in PSNR
compared to 4D-FSR, and outperforms the state-of-the-art
method in [7].

2. LIGHT FIELD RESAMPLING

2.1. Problem statement

We consider a 4D randomly-sampled light field, and we aim
at estimating the 4D signal that best fits the available sam-
ples. The light field reconstruction is conducted per 4D hyper-



Table 1: Table of notations

j The imaginary unit: j2 = −1
z∗ = <(z)− j.=(z) Complex conjugate of z

i Iteration index
Ω = J1;KK× J1;LK× J1;MK× J1;NK Local light field domain

P = |Ω| = K.L.M.N Number of samples in Ω
A ⊂ Ω Subset of known samples
B ⊂ Ω Subset of unknown samples
C ⊂ Ω Subset of reconstructed samples

p = (k, l,m, n) ∈ Ω A pixel’s position within Ω
f : Ω→ R Local light field
g(i) : Ω→ R Approximation model at iteration i
w : Ω→ R Weighting function
r(i) : Ω→ R Weighted residue at iteration i
ϑ = (s, t, u, v) A frequency in the 4D spectrum
ϕϑ : Ω→ R A 4D Fourier basis function

Θ(i) = {ϑ1, . . . ,ϑi} Frequency subset at iteration i
Xϑ =

∑
p x[p]ϕ∗ϑ[p] Capitals denote Fourier transforms

block, in the order of decreasing density of known samples.
Each hyper-block to reconstruct is regarded as the core of a
surrounding area in the spatial and angular dimensions (see
Fig. 1). Let Ω be the 4D domain made of the hyper-block and
its local surroundings: Ω spans over M × N views with co-
located K × L patches. Let A, B and C respectively denote
the local subsets of the known, unknown, and reconstructed
samples: Ω = A ∪B ∪ C. Table 1 summarizes the notations
used throughout the paper.

A weighting function w is introduced to discriminate
known and reconstructed samples from unknown samples in
this area:

w[p] = w[k, l,m, n] =


ρ
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2

s ρ

√
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s ρ
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a for p ∈ C

(1)

where k = k − K−1
2 , l = l − L−1

2 , m = m − M−1
2 ,

n = n − N−1
2 , and 0 < ρs, ρa, δ < 1. The factors ρs and

ρa respectively determine the weighting decay in the spatial
dimension (within a view) and in the angular (cross-view) di-
mension. The parameter δ is used to differentiate the contri-
bution of reconstructed data from the available data.

Eventually, let f be the local light field defined on Ω. The
algorithm generates its sparse approximation model

g[p] =
∑
ϑ∈Θ

cϑϕϑ[p] (2)

as a weighted combination of Fourier basis functions defined
as:

ϕϑ[p] = ϕstuv[k, l,m, n] = e2πj( ks
K + lt

L + mu
M + nv

N ) (3)

2.2. Iterative light field reconstruction by frequency se-
lection

Let r(i) be the weighted residue of the approximation model
with respect to the signal at iteration i:

r(i) = (f − g(i)).w (4)

Fig. 1: 4D hyper-block (outlined in red) and its local spatio-angular
neighborhood (K = L = 6 and M = N = 5).

A global overview of the reconstruction method is provided
in Algorithm 1. The model is generated iteratively by adding
a new basis function at each iteration. Two main steps are
conducted at each iteration: the selection of the basis function
that minimizes the residual error, followed by the update of
the model and the residue.

The basic idea of the algorithm FSR [10] is similar to
Matching Pursuit [12] in the sense that it aims at sparsely ap-
proximating a signal by finding the best matching projections
of the data onto the span of a Fourier basis. As such, the se-
lected basis function at iteration i is the one on which the pro-
jection of the residue r(i−1) is maximal (line 5. in Algorithm
1). The corresponding expansion coefficient c(i)ϑi

is computed

by minimizing the weighted residual energy E(i)
w :

E(i)
w =

∑
p∈Ω

(f [p]− g(i−1)[p]− c(i)ϑi
ϕϑi [p])2.w[p] (5)

According to the authors of [10], minimizing E(i)
w with re-

spect to c(i)ϑi
and c(i)∗ϑi

leads to the following equation:

c
(i)
ϑi

=

∑
p∈Ω r

(i−1)[p]ϕ∗ϑi
[p]∑

p∈Ω w[p]
(6)

Once the basis function is selected, the sparse model as well
as the residue are updated (lines 7. and 8. in Algorithm 1).
The algorithm then proceeds to the next iteration where a new
basis function is selected, and so on, until a predefined num-
ber of iterations is reached. Since the basis functions are not
orthogonal if evaluated with the weighting function, a con-
stant factor γ is introduced in [10] in each expansion coef-
ficient, to compensate the orthogonality deficiency. So far,
the minimization criterion takes into account the residue pro-
jection only on the current selected basis function, and thus,
does not ensure having the best approximation with all basis
functions selected so far. Consequently, a basis function can



Algorithm 1 Light field reconstruction

1: Split the light field into 4D hyper-blocks
2: for each hyper-block in the decreasing density order do
3: Initialization: g(0) = 0; r(0) = f.w
4: for iteration i← 1,max iterations do
5: ϑi = argmaxϑ〈ϕϑ, r

(i−1)〉
6: Compute c(i)ϑi

7: g(i) = g(i−1) + c
(i)
ϑi
ϕϑi

8: r(i) = r(i−1) − c(i)ϑi
ϕϑiw

9: Update the light field on the hyper-block

be selected more than once, and a high number of iterations
(100 in [10]) is required to reach a fair reconstruction quality.
To overcome these limitations, we introduce a better crite-
rion for approximating the residual error. By incorporating all
the selected basis functions in the update of the approximated
residue, a more accurate reconstruction can be obtained with
a reduced number of iterations. This idea has been discussed
in the context of image coding in [13], but has never been an-
alyzed, nor used, to sparsely reconstruct randomly sampled
light fields.

2.3. Hermitian symmetry and orthogonality criterion

Since the light field signal is Hermitian, we explicitly gather
the conjugate contributions of opposite frequencies at each
iteration. We furthermore take into account the impact of the
new selected frequency upon every frequency selected so far:

g(i) = g(i−1) +
∑

ϑ∈Θ(i)

1

2

(
∆cϑϕϑ + ∆c∗ϑϕ

∗
ϑ

)
(7)

The basis function selection is conducted in the same way as
in the previous section. However, the new minimization cri-
terion with respect to each ∆cϑ yields a system of equations
whose solution ensures that the residue is orthogonal to each
basis function selected so far:∑

p∈Ω

(
w[p].ϕϑ[p]

∑
ϑ′∈Θ(i)

1

2

[
∆cϑ′ϕϑ′ [p] + ∆c∗ϑ′ϕ∗ϑ′ [p]

])
=
∑
p∈Ω

r(i−1)[p]ϕϑ[p], ∀ϑ ∈ Θ(i)
(8)

Equivalently, minimizing with respect to ∆c∗ϑ leads to the
complex conjugate of the system in Eq.8. Thanks to this new
criterion, a basis function is selected only once, and the model
g is completely recalculated at each iteration.

In the Fourier domain, the previous equation can be ex-
pressed as:∑
ϑ′∈Θ(i)

1

2

(
∆cϑ′W ∗ϑ′+ϑ + ∆c∗ϑ′Wϑ′−ϑ

)
= R

(i−1)∗

ϑ , ∀ϑ ∈ Θ(i)

(9)

where W and R refer to the Fourier transforms of w and r,
respectively. The objective is to estimate updates of all the
expansion coefficients {∆c(i)ϑt

}t=1..i, i.e. to resolve the fol-
lowing equation:

∆c(i) = 2 W(i)−1

R(i−1) (10)

where we define the (2i − 1) vectors ∆c(i) and R(i−1), and
the matrix W(i) of size (2i− 1)× (2i− 1) as follows:
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W
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)
with:

W
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11 =

[
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]
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W
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[
=(Wϑx+ϑy −Wϑx−ϑy )

]
(x,y)∈J1;iK×J2;iK

W
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[
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W
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[
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]
(x,y)∈J2;iK×J2;iK

Eventually, the parametric model and the residue are up-
dated in the Fourier domain according to all the {1..i} se-
lected basis functions:{

G
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3. EXPERIMENTAL RESULTS

We show experimental results of the reconstruction of sub-
sampled light fields by the iterative 4D-FSR algorithm
presented beforehand, using the same parameter values as
in [10], with iteration number fixed at 100, as well as by the
Orthogonal Frequency Selection (OFS) introduced in sec-
tion 2.3, but with a number of iterations reduced to 30. The
parameters ρs, ρa and δ are respectively set to 0.7, 0.5 and
0.5. The reconstruction quality is evaluated in terms of PSNR
averaged on all views for different sampling rates. Table 2
represents results of tests carried out on various light fields:
plenoptic contents Flower1 and Cars from [14], multi-view
contents Crystal and Lego Truck 1 as well as synthetic datasets

1http://lightfield.stanford.edu/lfs.html



Table 2: PSNR in dB from light fields reconstruction by the proposed method 4D-OFS compared to FSR [10] extended to 4D.

Plenoptic data Multi-view data Synthetic data

Sampling rate Flower1 Cars Crystal Lego Truck StillLife Butterfly

FSR OFS FSR OFS FSR OFS FSR OFS FSR OFS FSR OFS

4% 31.92 32.44 30.47 31.67 34.44 36.38 36.15 37.17 28.20 29.02 39.59 40.50
10% 32.77 33.31 30.91 32.11 34.84 36.77 36.57 37.62 28.74 29.77 39.83 40.87
20% 33.34 33.82 31.47 32.64 35.48 37.38 37.21 38.26 29.66 30.69 40.46 41.41
40% 34.78 35.31 32.73 33.88 36.71 38.57 38.46 39.49 31.33 32.39 41.81 43.29

Fig. 2: Tested light fields. From left to right: Flower1, Cars, Crystal,
Lego Truck, StillLife, Butterfly.

(a) (b) (c)
Fig. 3: Reconstruction quality comparison on the light field StillLife
[15] with a sampling rate of 4%: (a) original, (b) FSR, (c) OFS.

StillLife and Butterfly [15]. The proposed method 4D-OFS
achieves a high-quality reconstruction of the tested contents,
with PSNR reaching 40dB for some contents, and significant
average gains ranging from 0.52dB to 1.9dB in comparison
to 4D-FSR. Fig. 3 compares the reconstruction quality of a
view from the light field StillLife [15], reconstructed by both
methods at a sampling rate of 4%. One can see that the 4D-
FSR presents more artifacts on the edges. Additionally, Fig. 4
compares these methods with the state-of-the-art compressive
sensing algorithm (RUS) [7] using non-overlapping blocks,
on the light field Dragon [6]. 4D-OFS achieves a significant
gain in reconstruction quality compared to RUS, especially
for a low number of samples (2.7dB at 4%). A comparison of
the visual quality of the reconstruction can be seen in Fig. 5.

4. CONCLUSION

We introduced a new iterative block-wise algorithm to recon-
struct randomly sampled light fields. The work falls within
the effort of addressing the challenge of dense light field ac-
quisition with compressive sensing schemes. The method se-
lects the Fourier basis functions that best approximate the
available samples, and generates a sparse model of the sig-
nal. We then improve the method by presenting an orthogo-
nal version which ensures that the approximation residue lies
in a subspace orthogonal to the one spanned by the already

 4% 10% 20% 40%
Sampling rate

31

32

33

34

35

36

PS
NR

 [d
B]

4D-OFS
4D-FSR
RUS

Fig. 4: PSNR comparison of 4D-FSR, 4D-OFS methods and RUS
[7] for different sampling rates.

(a) (b) (c) (d)

Fig. 5: Reconstruction quality comparison on the light field Dragon.
Top: (left) 4% sub-sampled view, (right) OFS reconstruction. Bot-
tom: (a) sampled region, (b) RUS, (c) FSR, (d) OFS.

selected basis functions. Experimental results show that the
method achieves a high-quality reconstruction, and demon-
strate the advantage of the improved version, while using a
reduced number of iterations. A comparison with a learning-
based state-of-the-art method demonstrates PSNR gains, even
for low sampling rates. Future work will focus on extrapolat-
ing the approximation into the continuous Fourier domain.
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