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IMAGE FUSION OF X-RAY AND ELECTRON TOMOGRAMS

Yan Guo and Bernd Rieger
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ABSTRACT

With electron tomography, we can reconstruct a three-
dimensional (3D) volume of a specimen from a series of
its two-dimensional (2D) projection images on the nanoscale.
In a scanning transmission electron microscope (STEM),
element-specific maps and mass-contrast projections can be
simultaneously acquired from the X-ray spectrometer and
electron detector. The X-ray tomogram has high chemical
specificity but low signal-to-noise ratio (SNR), while the elec-
tron tomogram has poor compositional information but high
SNR. In this paper, we adopt and modify a regression-based
image fusion algorithm to combine these two complementary
modalities, so that the fused version would maintain both high
chemical specificity and high SNR. We demonstrate that our
method improves reconstruction quality on an experimental
dataset of a core-shell nanoparticle. Specifically, it delivers
tomograms with sharper edges and smoother fore- and back-
ground, and hence can enable easier and more accurate 3D
characterization of such nanostructures.

Index Terms— Image fusion, partial least squares regres-
sion, cross-modality modeling

1. INTRODUCTION

As nanotechnology advances, electron tomography is becom-
ing popular in materials science because it can examine the
3D structure of a specimen on the nanoscale [1]. In a trans-
mission electron microscope, the sample under study is ex-
posed to an electron beam and tilted to obtain 2D projection
images at different angles. In tomography, these projections
are called tilt-series, from which we can reconstruct a 3D to-
mogram of the sample via various algorithms [1]. In fact, to-
mography is not only broadly investigated and applied in 3D
imaging in electron microscopy but also in other fields, such
as medical imaging where X-rays are used to image tissues
[2]. So far, dozens of reconstruction algorithms have been
proposed [2–5], and filtered backprojection (FBP) and simul-
taneous iterative reconstruction technique (SIRT) are the most
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commonly adopted. Nevertheless, tomographic reconstruc-
tion remains an ill-posed inverse problem for two reasons: in-
sufficient number of projections during data acquisition, and
inevitable noise in the measurement such as shot noise [2].
Therefore, we have to select suitable algorithms for different
datasets. For instance, in the presence of limited projections
and noise, FBP aggravates thin streaks in the reconstruction,
whereas SIRT does not. However, we still need to choose a
proper number of iterations for SIRT (typically between 20
and 30) to balance the reconstruction quality and SNR [4].

In STEM, different imaging modalities can provide us
complementary information about a specimen. For exam-
ple, projections formed by a high-angle annular dark-field
(HAADF) detector are at atomic resolution with high SNR
but not element-specific [6]. Conversely, elemental maps gen-
erated by the energy dispersive X-ray spectrometer (EDS) are
rich in chemical information but suffer from low SNR [7]. In
order to integrate the strengths of these two complementary
modalities into one reconstruction, Zhong et al. proposed
HAADF-EDS bimodal tomography [5], which introduces a
weighting factor α to balance the residue terms of HAADF-
STEM and EDS-STEM. The choice of α depends on the noise
level of the EDS data and influences the reconstruction qual-
ity [5]. However, we cannot determine the “best” value of
α in advance. It is currently chosen by comparing recon-
structions computed over the whole range of α ∈ (0, 1) to
a hand-segmented ground truth. Since this is impractical in
the semiconductor industry, algorithms that do not require a
hand-segmentation are desirable.

In order to benefit from different reconstruction algo-
rithms and the two aforementioned imaging modalities, one
can employ image fusion. It fuses multiple input images
into a single output, so that the composite version would be
more comprehensive for human and/or machine perception
than any source image alone. From low to high, fusion can
occur at three different levels: pixel, feature, and decision
level [8–10]. Compared to the latter two, pixel-level fusion
that directly uses the available information from respective
source images without extracting features nor constructing
classifiers is the most broadly developed. State-of-the-art im-
age fusion techniques are summarized in [11]. Multi-sensor
image fusion is one of the active subfields where source im-
ages originate from different sensors, such as infrared and



optical cameras [12], or computed tomography (CT) and
magnetic resonance imaging (MRI) scanners [13, 14]. It
has been extensively applied in diverse scenarios, including
remote sensing [15], medical diagnosis [16] and surveil-
lance [17,18]. In [19], van de Plas et al. extended the concept
of multi-sensor image fusion to study protein, peptide, lipid
and drug distributions in tissues. With partial least squares
regression, they built a cross-modality model to fuse data
obtained from mass spectrometry and optical microscopy.
Surprisingly, this concept has still not been widely applied to
electron tomography.

In this paper, we aim to fuse X-ray and electron to-
mograms for reconstructing nanomaterials with neither a
ground truth nor a tuning parameter. Specifically, we mod-
ify the regression-based cross-modality modeling of van de
Plas [19] to fuse EDS and HAADF reconstructions of a core-
shell nanoparticle consisting of gold and silver. Compared
with HAADF-EDS bimodal tomography (HEBT) [5], our
fusion algorithm enables reconstructions with sharper edges
and smoother fore- and background, and achieves higher
Pearson coefficients between the reconstruction and a hand-
segmented ground truth both for Au and Ag. To begin with,
we explain our three-step algorithm in Section 2, and compare
it to FBP, SIRT and HEBT qualitively and quantitatively in
Section 3. In Section 4, we summarize our work and discuss
possible future extensions.

2. METHOD

Our specimen is a core-shell nanoparticle that contains gold
(Au) in the inner shell and silver (Ag) in the outer [5]. It is
projected at 31 tilt angles, ranging from −75◦ to +75◦ with
an increment of 5◦ between the consecutive projections. At
each angle, one HAADF projection and one X-ray spectrum
image are recorded. Then, the latter is deconvolved into two
element-specific channels, one for Au and the other Ag. This
provides us three tilt-series datasets at hand.

We use six different reconstruction algorithms for fu-
sion: filtered backprojection (FBP), simultaneous iterative
reconstruction technique (SIRT), simultaneous algebraic re-
construction technique (SART) [2], conjugate gradient least
squares (CGLS) algorithm, maximum likelihood reconstruc-
tion for emission tomography (EM) [3], and total variation
minimization (TV-min) reconstruction technique [4]. As
a result, we have six image volumes reconstructed by the
six aforementioned algorithms for each tilt-series dataset.
Throughout this paper, we use ASTRA toolbox, which is an
open source platform under the GPLv3 license for 3D image
reconstruction in tomography [20].

In this section, we take the HAADF, EDS-Au and EDS-
Ag reconstructions to fuse a more accurate image for Au. Fus-
ing Ag follows the same principle. Note that we are only
working in 2D at present but will extend the algorithm to
3D in future. As depicted in Fig. 1, building a fusion model

Fig. 1: Three-step fusion algorithm. Details in Section 2.

for Au has three steps (note the difference between Au and
Ag at different positions): for each z-slice, (i) transform the
xy-slice of HAADF (or EDS-Ag) reconstruction into many
feature images; (ii) denoise EDS-Au image via non-negative
matrix factorization; (iii) build a cross-modality model be-
tween the feature images and denoised EDS-Au image, and
apply it for fusion.

2.1. Generate feature images

To build the cross-modality model, we need to collect enough
relevant information by generating more feature images from
the original twelve HAADF and EDS-Ag reconstructions (six
HAADF and six EDS-Ag, from six algorithms). At this step,
each xy-slice is processed by several texture filters, such as an
entropy filter [21]. Table 1 lists all the filters and their param-
eters, with which we expand the number of feature images
from 12 to 72. One can also extend the filtering operation to
various scale spaces. We choose a two-level Gaussian scale



space, and hence have 144 feature images in total.

Table 1: Filters and related parameters in step (i)

Name Parameter
Local entropy 3× 3 neighborhood
Local range 3× 3 neighborhood
Local standard deviation 3× 3 neighborhood
Local variance 3× 3 neighborhood
Gaussian gradient magnitude Standard deviation σ = 1

2.2. Denoising

For each value of z, we have six EDS-Au xy-slices. Al-
though they are computed using six different reconstruction
algorithms, they share common patterns. To extract the most
dominant structure among these slices and reduce their pixel-
specific variations, we perform non-negative matrix factoriza-
tion (NMF) over all the slices to obtain a denoised EDS-Au
image [22]. Compared with principal component analysis
(PCA), NMF only allows additive, not subtractive, combi-
nations due to its non-negativity constraints [22]. Since all
intensity values in the denoised image are inherently non-
negative, we choose NMF rather than PCA.

2.3. Build the cross-modality model

Step (iii) contains two phases. First, we adopt partial least
squares (PLS) regression [19] to build a cross-modality model
between the feature images generated in step (i) and the de-
noised EDS-Au image in step (ii). Then, we apply it to fuse
the final Au image. Similar to the ordinary least squares (LS)
regression, PLS regression also constructs a linear model

y = b0 + b1x1 + · · ·+ bPxP + ε (1)

to specify the (linear) relationship between a set of predic-
tor variables xp, p = 1, · · · , P and one response variable
y [23]. In Eq. (1), b0 is the intercept, bp, p = 1, · · · , P are
slopes, and ε is an error term. However, different from LS
that directly establishes a linear regression model in the orig-
inal data space, PLS first performs PCA to project both the
predictor and response variables to Ncomp components in an-
other space [24]. As a result, even if the correlation among
predictor variables is high, it can still guarantee stable re-
sults with low variability whereas LS cannot. For our pur-
pose, we take each (vectorized) feature image as one predic-
tor variable xp and the denoised EDS-Au image as y, and
solve this regression problem by plsregress() in MATLAB.
Because the variance explained in response variable y in-
creases with the number of PLS components Ncomp, we set
Ncomp to its maximum value Ncomp = P [19]. Once we find
all coefficients bp, p = 0, · · · , P , we fuse the Au image as

(a) FBP (b) SIRT (c) HEBT (d) Fusion (e) GT

Fig. 2: Au (gold) xy-slices of (a) FBP, (b) SIRT with 30 iter-
ations, (c) HEBT with 100 iterations and the associated opti-
mal weighting factor, and (d) fusion compared to (e) hand-
segmented ground truth (GT) at z = 80 (top), 150 (mid-
dle) and 220 (bottom). The size of reconstruction volume is
300 × 300 × 300. For better visualization, we perform per-
centile contrast stretching from 0 to 95%.

b0 + b1x1 + · · ·+ bPxP , which is guaranteed to be the closest
to the denoised EDS-Au image.

3. RESULTS

In this section, we compare our fusion algorithm to the
most popular algorithms FBP and SIRT, and the newly pro-
posed HAADF-EDS bimodal tomography (HEBT) [5]. FBP
and SIRT are performed on EDS-STEM data to achieve an
element-specific reconstruction. For HEBT, we set the num-
ber of iterations to 100, and choose the weighting factor α by
computing reconstructions for the whole range of α ∈ (0, 1)
and comparing them to a hand-segmented ground truth with
Pearson coefficient [25]. This coefficient measures the simi-
larity between two images f1 and f2 as

PC =

∑
i(f1,i − f̄1)(f2,i − f̄2)√∑

i(f1,i − f̄1)2
∑

i(f2,i − f̄2)2
(2)

in which f1,i and f2,i are the intensity values of i-th pixel,
f̄1 and f̄2 the average intensities over all pixels in f1 and f2,
respectively. Although HEBT can take one α value as the
input and simultaneously deliver Au and Ag reconstructions
as the output, we separately determine the optimal α for Au
and Ag. The size of reconstruction volume is 300×300×300.
Note that we only consider xy-slices where z ∈ [80, 220],
because they are the least influenced by boundary artifacts.

Fig. 2 and Fig. 3 depict xy-slices of Au and Ag recon-
structions at z = 80, 150 and 220, which are generated by
FBP, SIRT, HEBT and our fusion algorithm, respectively.
Binary images in the last column are the hand-segmented



(a) FBP (b) SIRT (c) HEBT (d) Fusion (e) GT

Fig. 3: Ag (silver) xy-slices of (a) FBP, (b) SIRT with 30 it-
erations, (c) HEBT with 100 iterations and the associated op-
timal weighting factor, and (d) fusion compared to (e) hand-
segmented ground truth (GT) at z = 80 (top), 150 (middle)
and 220 (bottom). For better visualization, we perform per-
centile contrast stretching from 0 to 95%.

ground truth with homogeneous intensity. Since the number
of projections in our EDS tilt-series datasets is low (only
31 in total), images reconstructed by FBP suffer from se-
vere star-shaped thin streaks in the background. In this case,
SIRT effectively suppresses such artifacts by setting up alge-
braic equations for unknown reconstructions in terms of the
projection data. Compared with FBP and SIRT, tomograms
delivered from HEBT show the smoothest foreground and the
most continuous boundaries (see Fig. 3(b) and 3(c)). How-
ever, even with the optimal weighting factor, cross-element
contamination where Au leaks into the background of Ag
reconstruction (and vice versa) still exists. In comparison
to HEBT, our fusion algorithm not only achieves a better
separation between Au and Ag with sharper and clearer
edges, but also more homogeneous fore- and background.
Such improvement would make characterization of core-shell
nanomaterials, like 3D metrology and surface roughness
measurement, easier and more accurate. Note that neither a
ground truth nor a tuning parameter is required in our fusion
process.

We also quantitatively compare our algorithm to HEBT
for all slices between 80 and 220 by measuring the similarity
between the reconstruction image and ground truth using the
Pearson coefficient defined in Eq. (2). It can be seen in Fig. 4
that our algorithm outperforms HEBT, as it achieves higher
Pearson coefficients both for Au and Ag reconstructions.

4. CONCLUSION AND FUTURE WORK

In this paper, we adopt and modify a regression-based image
fusion algorithm to build a cross-modality model between the
EDS and HAADF reconstructions of a core-shell nanoparti-

80 100 120 140 160 180 200 220
Slice index

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Pe
ar

so
n 

co
ef

fic
ie

nt

Image fusion
HEBT

(a) Au (gold)

80 100 120 140 160 180 200 220
Slice index

0.9

0.92

0.94

0.96

0.98

Pe
ar

so
n 

co
ef

fic
ie

nt
Image fusion
HEBT

(b) Ag (silver)

Fig. 4: Comparison of Pearson coefficients versus slice index
for (a) Au and (b) Ag. Reconstructions generated by fusion
algorithm, and by HEBT with 100 iterations and its optimal
weighting factor.

cle consisting of Au and Ag. Compared with the conven-
tional FBP and SIRT, and the more advanced bimodal tomog-
raphy, our algorithm guarantees output with sharper edges
and smoother fore- and background. As for the future work,
we consider testing the robustness of our fusion algorithm for
core-shell nanomaterials whose atomic number of the inner
shell is close to the outer. Moreover, we will also extend
the current framework to 3D (filtering and denoising) and/or
to characterize more complex nanostructures such as multi-
elemental semiconductor devices.
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