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ABSTRACT

Pruning filters is an effective method for accelerating deep
neural networks (DNNs), but most existing approaches prune
filters on a pre-trained network directly which limits in ac-
celeration. Although each filter has its own effect in DNNs,
but if two filters are same with each other, we could prune
one safely. In this paper, we add an extra cluster loss term
in the loss function which can force filters in each cluster to
be similar online. After training, we keep one filter in each
cluster and prune others and fine-tune the pruned network to
compensate the loss. Particularly, the clusters in every layer
can be defined firstly which is effective for pruning DNNs
within residual blocks. Extensive experiments on CIFAR10
and CIFAR100 benchmarks demonstrate the competitive per-
formance of our proposed filter pruning method.

Index Terms— Deep neural networks, similar filter, filter
pruning, cluster loss

1. INTRODUCTION

Deep neural networks (DNNs) have achieved state-of-art per-
formance in many computer vision tasks [1][2] and grown
deeper and deeper. However, these high capacity networks
suffer high complexity in both storage and computation es-
pecially when used in resource-limited platforms, such as
mobile phones and embedded devices [3]. Thus, many re-
searchers have a significant interest in network compression
methods for reducing the storage and computation costs.

With the observation that DNNs have a significant param-
eter redundancy, pruning methods have been widely studied
for reducing the number of parameters in networks. In the
earlier years, researchers prune weights in a network, but it
has a limitation in accelerating network inference [4][5]. Af-
terwards, more and more works focus on pruning filters or
channels which can result in a thinner model and significant
accelerations [6][7][8][9][10][11][12][13]. The main step of
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Fig. 1. The flow chart of our proposed method (e.g., a convo-
lutional layer including 8 filters and 4 clusters).

the above pruning methods is to measure the importance score
of each filter. After that, they prune the least important filters
followed by a fine-tuning process to recover the performance
of the network. Some methods are based on the magnitude
of the filter [9] and some approaches exploit the information
of feature maps to estimate the importance of the correspond-
ing filter [7][11]. Moreover, if two weights are similar, one of
them is redundant and can be pruned [13], but it only consid-
ers the fully-connected layers and limits in accelerating con-
volutional neural networks.

In this paper, we propose a new filter level pruning
method. Our method is based on the fact that if two filters
are similar, one of them is redundant and can be effectively
removed [13]. But two filter sets are always dissimilar in
a trained DNN. In order to force the two filter sets similar,
we propose a new training algorithm which is achieved by
adding a “cluster loss” on the original loss function. The net-
work can learn compact representations during training with
backpropagation algorithm. As shown in Fig 1,our method
consists of three main steps: (1) Given a DNN, we define the
clusters which each filter belong to and train the network with
our proposed training algorithm. (2) After training, filters
in each cluster are similar and one of them can be removed,
besides, the corresponding filter channels can also be pruned.
(3) At last, we fine-tune the pruned network to compensate
the performance degradation.
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We evaluate our proposed method on two bechmark
datasets (CIFAR10 and CIFAR100) and demonstrate its
competitive performance compared with state-of-the-art ap-
proaches. For VGG-16, our method shows 2× speedup with-
out loss in accuracy. With WRN-16-4, it achieves about 3.4×
and 1.74× speedup within 1% accuracy drop on CIFAR10
and CIFAR100, respectively.

2. RELATED WORK

As one of the most popular methods for accelerating network
inference, pruning has been widely studied recently. In the
earlier work, Optimal Brain Damage [4] prunes unimportant
weights to reduce the number of parameters and prevent over-
fitting. Recently, Han et al. [5] prune the weights which are
below a threshold results in a very sparse model with no loss
of accuracy. But such a non-structured sparse model has lim-
itations of accelerating inference without specific hardware
[11]. Latter, researchers focus on filter level pruning which
can not only reduce the memory footprint dramatically but
also speedup network inference by any off-the-shelf library.
Li et al. [9] prune the less useful filters based on sum of ab-
solute weights directly.

But the filter of small magnitude does not mean it is not
important. Thus, the methods based on the information of
activations are studied. Hu et al. [8] calculate the sparsity of
activations after the ReLU function and prune the correspond-
ing filters if the sparsity is high. Molchanov et al. [12] adopt a
first-order Taylor expansion to approximate the change to loss
function induced by pruning each filter. He et al. [7] prune
channels by a LASSO regression based channel selection and
least square reconstruction. Yu et al. [14] prune the entire
network jointly to minimize the reconstruction error of im-
portant responses in the “final response layer” and propagate
the importance scores of final responses to every neuron.

Besides the above methods which prune filters on a pre-
trained network, several methods add regularization or other
modifications during training. For example, Liu et al. [10]
enforce channel sparsity by imposing L1 regularization on
the scaling factors in batch normalization. McDanel et al.
[15] utilize incomplete dot products to dynamically adjust the
number of input channels used in each layer. Zhou et al. [6]
introduce a scaling factor to each filter to weaken the weights
step by step and prune the filters after training.

Meanwhile, other methods are well explored to compress
networks. Knowledge distillation [16] first trains a big net-
work (i.e., teacher network) and then trains a shallow one
(i.e., student network) to mimic the output distributions of the
teacher. Network quantization reduces the number of bits for
representing each parameter and some low-bit networks are
proposed [17][18][19]. Low-rank factorization decompose
weights into several pieces [20][21]. Note that our pruning
method can be integrated with the above techniques to achieve
a more compact and efficient model.
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Fig. 2. Pruning similar filters in a convolutional layer. When-
ever two filters sets are similar, we remove one of them for
A, while the corresponding channels of the output activations
B can also be pruned.Moreover, the channels of filter in next
layer can also be removed, but we need to add one channel to
the other in each sets (i.e., from C to D) as shown in Eq (3).

3. OUR METHOD

In this section, we first show how we prune the similar filters
for a singe layer, then propose a new training algorithm for
forcing filters in each cluster to be similar. Finally, we analyze
the acceleration and compression of our method.

3.1. Pruning Similar Filters

We use a triplet 〈Yi,Ki, ∗〉 to denote the convolution pro-
cess in layer i, where Yi ∈ RH×W×M is the input tensor,
which has M channels, H rows and W columns. And Ki ∈
Rd×d×M×N is a filter bank with d × d kernel size, ∗ denote
the 3D convolution operation which maps Yi to Yi+1 using
Ki, where Yi+1 is the input tensor in layer i + 1 (which is
also the output tensor of layer i), Note that the fully connected
operation is a special case of convolution operation.

Formally, the jth channel of Yi+1 can be computed with
the jth filter and the input tensor Yi using the 2D convolution
operation ⊗ as follows :

yji+1 = h(kji ∗ yi) = h(

M∑
m=1

kjmi ⊗ ymi )

= h(kj1i ⊗ y
1
i + kj2i ⊗ y

2
i + . . .+ kjMi ⊗ yMi ),(1)

where h(·) is the nonlinear function, such as sigmoid or
ReLU, ymi is the mth channel and kjmi is the mth channel of
the jth filter in layer i. Note that we ignore the corresponding
bias for simplicity. In the same way, yji can be computed as:

yji = h(kji−1 ∗ yi−1). (2)

Now let us suppose that k1i−1 = k2i−1. This means that
the corresponding feature maps are the same, e.g., y1i = y2i
according to Eq (2). For jth filter, replacing kj2i by kj1i in Eq
(1), we get the Eq (3).
yji+1 = h((kj1i + kj2i )⊗ y1i + 0⊗ y2i + . . .+ kjMi ⊗ yMi ), (3)

where 0 is the channel of all zero-value. This means that
whenever two filter sets in layer i− 1 are equal, we can prune



one of them safely. At the same time, we modify the filter
channels in layer i (i.e., for each filter, we add one channel to
the other). Fig. 2 exhibits the operation clearly.

3.2. Proposed Training Algorithm

However, two filter sets could never be exactly equal in a
trained CNN, and it’s hard to find such two similar filter sets.
To cope with it, we propose a new training algorithm to force
several two filter sets to be equal. LetK denote the weights in
the network and f(K) is our loss function, the optimization
target can be formulated as:

f(K) = E(K) + δR(K) + λ

L∑
i=1

T∑
t=1

‖kti − cti‖2, (4)

cti =
1

|St
i |

∑
kt
i∈St

i

kti , (5)

where E(K) and R(K) refer to the cross-entropy loss and
the regularization loss, respectively, δ and λ are the tunable
parameters to balance the loss terms, ‖kti − cti‖2 denotes the
“cluster loss” of the tth cluster in layer i. Thus, the filters in
each cluster St

i are forced to be similar using the cluster loss
and just one filter is kept after training.

If the clusters are changing during training, it may cause
the training process difficult due to the high dimension of each
filter and the non-balanced clusters. Therefore, in this work,
we can define the clusters St

i which the filters belong to firstly
and keep the clusters not change online. And the number of
cluster in each layer is specified with the compression rate.

Specifically, let N denote the number of filters in layer
i and N × p is the number of filters are pruned ( 1

1−p is the
compression rate). We restrict p ≤ 0.5, because the perfor-
mance degrades severely when over half of filters are pruned.
The size of each cluster |St

i | is no larger than two for balance.
Thus, there areN×(1−p) clusters, where eachN×p cluster
contains two filters and each N × (1 − 2p) cluster contains
just one filter. Note that one of the filters in each cluster whose
size is larger than one is pruned and the clusters of size equal
to one are preserved.

Analysis of Compression and Acceleration. According
to Eq (3) and Fig. 2, if a filter in layer i is removed, its corre-
sponding channel of filters in layer i + 1 is also discarded.
The size of each feature map is kept the same. Since we
preserve Ni × (1 − pi) filters in layer i. The speedup ra-
tio rsi and compression ratio rci of the pruned network for
layer i compared to the original network can be computed by
rsi = rci = (1−pi−1)(1−pi). Note that the feature maps in
layer i are also compressed 1 − pi times which saves a large
proportion of runtime memory.

4. EXPERIMENTS

We evaluate our proposed method on several typical networks
and two datasets (CIFAR-10 and CIFAR-100) [22]. We use
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Fig. 3. Accuracy after pruning filters (left) and the final “clus-
ter loss” under different pruned ratio and different λ (Eq (4))
for the WRN-16-4 model on CIFAR10 (right).

TensorFlow [23] framework to implement network pruning
and evaluate on Nvidia GTX 1080Ti GPU.

4.1. Implementation Details and filter selection criteria

CIFAR10 and CIFAR100 both consist of a training set of
50000 and a test set of 10000 color images of size 32 × 32
with 10 classes and 100 classes, respectively. The training
images are padded by 4 pixels and randomly flipped.

We evaluate three DNNs (i.e., VGG-16, ResNet-34 and
WRN-16-4) on the two datasets, respectively. All networks
are trained using SGD with batch size 128 and 300 epochs.
The weight decay is 0.0005 and momentum is 0.9. The other
hyper-parameters for the models are in the following. (1)The
VGG-16 network is derived from [9]. The initial learning rate
is set to 0.02, and is divided by 5 at each 60 epochs. We get
the baseline accuracy on CIFAR10 and CIFAR100 of 93.55%
and 73.23%, respectively. (2) The ResNet-34 model replaces
shortcut layer with a 1 × 1 convolutional layer of ResNet-32
[24]. The initial learning rate is set to 0.1, and is divided by 5
at each 60 epochs. We get the baseline accuracy on CIFAR10
and CIFAR100 of 93.56% and 69.82%, respectively. (3) The
WRN-16-4 network is adopted from [25]. The initial learning
rate is set to 0.2, and is divided by 5 at each 60 epochs. We get
the baseline accuracy on CIFAR10 and CIFAR100 of 95.01%
and 75.99%, respectively.

In addition, we compare our method with other state-of-
the-art criteria, including (1) Weight sum [9]. This criterion
measure the importance of a filter in each layer by calculating
the sum of its absolute weights (i.e.,

∑
|kji |); (2) Average

Percentage of Zeros (APoZ) [8]. APoZ measures the per-
centage of zero activations of a filter after the ReLU mapping.

The APoZ of the cth neuron is
∑N̂

n

∑
I(Lc(n)==0)

N̂×N , where N̂

is the number of training examples (we set N̂ = 50000); (3)
Randomly pruning. During pruning, it randomly selects and
removes filters. Moreover, we also compare the methods with
Train from scratch which trains a model from scratch, where
the model has the same structure as the pruned network.
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Fig. 4. A comparison of the performance with different filter selection criteria and different pruned ratio. The first row is the
VGG-16, ResNet-34 and WRN-16-4 network on CIFAR10, respectively. The second row is the models on CIFAR100. Our
approach is consistently better (larger is better). Besides, the last column is the speedup and compression ratio of models.

4.2. The effect of λ

Firstly, we explore the influence of λ (Eq (4)) on the perfor-
mance of our pruned method. We set the pruned ratio the
same in every layer of the WRN-16-4 network. Fig. 3 demon-
strates the accuracy of the pruned model with different pruned
ratio and λ and the “cluster loss” after training the model with
our proposed training algorithm. As expected, cluster loss in-
creases as filter pruned ratio and λ increases. In addition, the
losses are always small, so one filter in each cluster can be
pruned with minimal degradation of accuracy. The perfor-
mance of pruned network is similar with different λ. In the
rest of experiment, we set the λ to 0.05.

4.3. Comparison with other filter selection criteria

Fig. 4 shows the pruned results for VGG-16, ResNet-34 and
WRN-16-4 on CIFAR10 and CIFAR100 with different filter
selection criteria and different pruned ratios. Our approach
is consistently better than other filter selection criteria under
different pruned ratio. The method based on data (i.e., APoZ)
is similar to other data-independent approaches. This may
because the number of filters pruned is small and the gap of
these methods is not obvious. Training the pruned network
from scratch is not always worse than other methods espe-
cially when the model is deep and wide. We can accelerate
VGG-16 network 2× without loss in accuracy and speedup
WRN-16-4 model on CIFAR10 about 3.4× with 1% degra-
dation on accuracy. But the ResNet-34 is hard to compress,
which may because the model is already compact and effi-
cient.

Table 1. A comparison of speedup with other compression
methods. Values in parentheses are the increased error.

Dataset Model Error (%) Speedup

CIFAR10

VGG-16 [9] 6.75 (-0.15) 1.52×
VGG-16 [10] 6.34 (-0.14) 2.04×

VGG-16 (ours) 6.45 (-0.21) 2.77×
ResNet-56 [9] 6.96 (-0.02) 1.38×

ResNet-58 (ours) 6.18 (-0.01) 1.50×

CIFAR100

VGG-16 [10] 26.74 (-0.22) 1.59×
VGG-16 (ours) 26.77 (-0.32) 2.03×
WRN-16-4 [24] 24.53 (+0.30) 1.18×

WRN-16-4 (ours) 24.01 (+0.06) 1.34×

4.4. Comparison with other compression methods

Besides filter pruning methods, we compare the acceleration
of our approach with other network compression methods in
Table 1. In general, different layer has different importance
and sparsity [24], and the method based training [10] can au-
tomatically find it. Even though, our approach can outperform
other methods.

5. CONCLUSION

In this work, we introduce the cluster loss on the original loss
function to force filters in each cluster to be similar during
training, and prune one filter in every cluster safely. The com-
pact model is inference efficient and requires no special hard-
ware. Extensive experiments on two datasets demonstrate the
competitive performance of our proposed method. In the fu-
ture, we would like to evaluate our method on larger dataset
and more vision tasks.
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