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ABSTRACT

It is well-known that a number of excellent super-resolution (SR)
methods using convolutional neural networks (CNNs) generate
checkerboard artifacts. A condition to avoid the checkerboard arti-
facts is proposed in this paper. So far, checkerboard artifacts have
been mainly studied for linear multirate systems, but the condition
to avoid checkerboard artifacts can not be applied to CNNs due to
the non-linearity of CNNs. We extend the avoiding condition for
CNNs, and apply the proposed structure to some typical SR meth-
ods to confirm the effectiveness of the new scheme. Experiment
results demonstrate that the proposed structure can perfectly avoid
to generate checkerboard artifacts under two loss conditions: mean
square error and perceptual loss, while keeping excellent properties
that the SR methods have.

Index Terms— Super-Resolution, Convolutional Neural Net-
works, Checkerboard Artifacts

1. INTRODUCTION
This paper addresses the problem of checkerboard artifacts gener-
ated by some super-resolution (SR) methods using convolutional
neural networks (CNNs). SR methods using CNNs have been widely
studying as one of single image SR techniques, and have superior
performances [1–5]. Moreover, in order to accelerate the process-
ing speed, CNNs including upsampling layers such as deconvolution
[6] and sub-pixel convolution [7] ones have been proposed [7–12].
However, it is well-known that these SR methods generate periodic
artifacts, referred to as checkerboard artifacts [13].

In CNNs, it is well-known that checkerboard artifacts are gen-
erated by operations of deconvolution, sub-pixel convolution lay-
ers [14]. To overcome these artifacts, smoothness constraint [15],
post-processing [13], initialization scheme [16] and different upsam-
pling layer designs [14, 17, 18] have been proposed. Most of them
can not avoid checkerboard artifacts perfectly, although they reduce
the artifacts. Among them, Odena et al. [14] have demonstrated that
checkerboard artifacts can be perfectly avoided by using resize con-
volution layers instead of deconvolution ones. However, the resize
convolution layers can not be directly applied to upsampling lay-
ers such as deconvolution and sub-pixel convolution ones, so this
method needs not only large memory but also high computational
costs.

On the other hand, checkerboard artifacts have been studied to
design linear multirate systems including filter banks and wavelets
[19–22]. In addition, it is well-known that checkerboard artifacts
are caused by the time-variant property of interpolators in multi-
rate systems, and the condition for avoiding these artifacts have been
given [19–21]. However, the condition to avoid checkerboard arti-
facts for linear systems can not be applied to CNNs due to the non-
linearity of CNNs.

In this paper, we extend the avoiding condition for CNNs, and
apply the proposed structure to SR methods using deconvolution and

A. Interpolation based

SRCNN [1, 2], VDSR [3], DRCN [4], DRRN [5]

B. Upsampling layer based

B.1 Deconvolution

FSRCNN [8], LapSRN [9]

B.2 Sub-pixel Convolution

ESPCN [7], SRGAN [10]

B.3 Resize Convolution

EnhanceNet [11]

B.4 Others

PSRnet [12]

SR methods using CNNs

Fig. 1: Classification of SR methods using CNNs

sub-pixel convolution layers to confirm the effectiveness of the new
scheme. Experiment results demonstrate that the proposed struc-
ture can perfectly avoid to generate checkerboard artifacts under two
loss conditions: mean square error and perceptual loss, while keep-
ing excellent properties that the SR methods have. As a result, it is
confirmed that the proposed structure allows us to offer efficient SR
methods without any checkerboard artifacts.

2. PREPARATION
Conventional SR methods using CNNs and works related to checker-
board artifacts are reviewed, here.

2.1. SR Methods using CNNs
SR methods using CNNs are classified into two classes as shown in
Fig. 1. Interpolation based methods [1–5], referred to as class A,
do not generate any checkerboard artifacts in CNNs, due to the use
of an interpolated image as an input to a network. In other words,
CNNs in this class do not have any upsampling layers.

On the other hand, when CNNs include upsampling layers, there
is a possibility that the CNNs generate some checkerboard artifacts.
This class, called class B in this paper, have provided numerous ex-
cellent SR methods [7–12], which can be executed faster than those
in class A. Class B is also classified into a number of sub-classes
according to the type of upsampling layers. This paper focuses on
class B.

CNNs are illustrated in Fig. 2 for an SR problem, as in [7],
where the CNNs consist of two convolutional layers and one upsam-
pling layer. ILR and f (l)

c (ILR) are a low-resolution (LR) image and
a c-th channel feature map at layer l, and f(ILR) is an output of
the network. The two convolutional layers have learnable weights,
biases, and ReLU [23] as an activation function, respectively, where
the weight at layer l has Kl × Kl as a spatial size and Nl as the
number of feature maps.

There are numerous algorithms for computing upsampling lay-
ers, such as deconvolution, sub-pixel convolution and resize convo-
lution ones, which are widely used as typical CNNs. Besides, decon-
volution [6], sub-pixel convolution [7] and resize convolution [14]
layers are well-known upsampling layers, respectively.
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Fig. 2: CNNs with an upsampling Layer

2.2. Works Related to Checkerboard Artifacts
Checkerboard artifacts have been discussed to design multirate sys-
tems including filter banks and wavelets by researchers [19–22].
However, most of the works have been limited to in case of using
linear systems, so they can not be directly applied to CNNs due to
the non-linearity. Some works related to checkerboard artifacts for
linear systems are summarized, here.

It is known that linear interpolators which consist of up-samplers
and linear time-invariant systems cause checkerboard artifacts due to
the periodic time-variant property [19–21]. Figure 3 illustrates a lin-
ear interpolator with an up-sampler ↑ U and a linear time-invariant
system H(z), where positive integer U is an upscaling factor and
H(z) is the z transformation of an impulse response. The interpo-
lator in Fig. 3(a) can be equivalently represented as a polyphase
structure as shown in Fig. 3(b). The relationship between H(z) and
Ri(z) is given by

H(z) =

U∑
i=1

Ri(z
U )z−(U−i), (1)

where Ri(z) are often referred to as a polyphase filter of the filter
H(z).

The necessary and sufficient condition for avoiding the checker-
board artifacts in the system is shown as

R1(1) = R2(1) = · · · = RU (1) = G. (2)

This condition means that all polyphase filters have the same DC
value i.e. a constant G [19–21]. Note that each DC value Ri(1)
corresponds to the steady-state value of the unit step response in
each polyphase filter Ri(z). In addition, the condition eq.(2) can be
also expressed as

H(z) = P (z)H0(z), (3)

where,

H0(z) =

U−1∑
i=0

z−i, (4)

H0(z) and P (z) are an interpolation kernel of the zero-order hold
with factor U and a time-invariant filter, respectively. Therefore, the
linear interpolator with factor U does not generate any checkerboard
artifacts, when H(z) includes H0(z). In the case without checker-
board artifacts, the step response of the linear system has a steady-
state valueG as shown in Fig. 3(a). Meanwhile, the step response of
the linear system has a periodic steady-state signal with the period
of U , such as R1(1), ..., RU (1), if eq.(3) is not satisfied.
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Fig. 3: Linear interpolators with upscaling factor U

3. PROPOSED METHOD
CNNs are non-linear systems, so conventional works related to
checkerboard artifacts can not be directly applied to CNNs. A
condition to avoid checkerboard artifacts in CNNs is proposed, here.
3.1. CNNs with Upsampling Layers
We focus on upsampling layers in CNNs, for which there are numer-
ous algorithms such as deconvolution [6], sub-pixel convolution [7]
and resize convolution [14]. For simplicity, one-dimensional CNNs
will be considered in the following discussion.

It is well-known that deconvolution layers with non-unit strides
cause checkerboard artifacts [14]. Figure 4 illustrates a system rep-
resentation of deconvolution layers [6] which consist of some in-
terpolators, where Hc and b are a weight and a bias in which c is
a channel index, respectively. The deconvolution layer in Fig. 4(a)
can be equivalently represented as a polyphase structure in Fig. 4(b),
where Rc,n is a polyphase filter of the filter Hc in which n is a filter
index. This is a non-linear system due to the bias b.

Figure 5 illustrates a representation of sub-pixel convolution lay-
ers [7], where Rc,n and bn are a weight and a bias, and f ′n(ILR) is
an intermediate feature map in channel n. Compared Fig.4(b) with
Fig.5, we can see that the polyphase structure in Fig. 4(b) is a spe-
cial case of sub-pixel convolution layers in Fig. 5. In other words,
Fig. 5 is reduced to Fig. 4(b), when satisfying b1 = b2 = ... = bU .
Therefore, we will focus on sub-pixel convolution layers as the gen-
eral case of upsampling layers to discuss checkerboard artifacts in
CNNs.
3.2. Checkerboard Artifacts in CNNs
Let us consider the unit step response in CNNs. In Fig. 2, when the
input ILR is the unit step signal Istep, the steady-state value of the
c-th channel feature map in layer 2 is given as

f̂ (2)
c (Istep) = Ac, (5)

where Ac is a positive constant value, which is decided by filters,
biases and ReLU. Therefore, from Fig. 5, the steady-state value of
the n-th channel intermediate feature map is given by, for sub-pixel
convolution layers,

f̂ ′n(Istep) =

N2∑
c=1

AcRc,n + bn, (6)

where Rc,n is the DC value of the filter Rc,n.
Generally, the condition,

f̂ ′1(Istep) = f̂ ′2(Istep) = ... = f̂ ′U (Istep), (7)
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Fig. 5: Sub-pixel convolution layer [7]

is not satisfied, so the unit step response f(Istep) has a periodic
steady-state signal with the period of U . To avoid checkerboard
artifacts, eq.(7) has to be satisfied, as well as for linear multirate
systems.
3.3. Upsampling Layers without Checkerboard Artifacts
To avoid checkerboard artifacts, CNNs must have the non-periodic
steady-state value of the unit step response. From eq.(6), eq.(7) is
satisfied, if

Rc,1 = Rc,2 = · · · = Rc,U , c = 1, 2, ..., N2 (8)

b1 = b2 = · · · = bU , (9)

Note that, in this case,

f̂ ′1(K · Istep) = f̂ ′2(K · Istep) = ... = f̂ ′U (K · Istep), (10)

is also satisfied as for linear systems, where K is an arbitrary con-
stant value. However, even when each filter Hc in Fig.5 satisfies
eq.(3), eq.(9) is not met, but eq.(8) is met. Therefore, we have to
seek for a new insight to avoid checkerboard artifacts in CNNs.

In this paper, we propose to add the kernel of the zero-order hold
with factor U , i.e. H0 in eq.(4), after upsampling layers as shown in
Fig. 6. In this structure, the output signal from H0 can be a constant
value, even when an arbitrary periodic signal is inputted to H0. As a
result, Fig. 6 can satisfy eq.(7).

There are three approaches to useH0 in CNNs by the difference
in training CNNs as follows.
A. Training CNNs without H0

The simplest approach for avoiding checkerboard artifacts is to add
H0 to CNNs after training the CNNs. This approach allows us to per-
fectly avoid checkerboard artifacts generated by a pre-trained model.
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Fig. 6: Proposed upsampling layer structure without checkerboard
artifacts

B. Training CNNs with H0

In approach B, H0 is added to CNNs before training the CNNs, and
then the CNNs with H0 are trained. This approach also allows us
to perfectly avoid checkerboard artifacts as well as for approach A.
Moreover, this approach provides higher quality images than those
of approach A.
C. Training CNNs with H0 inside upsampling layers
Approach C is applicable to only deconvolution layers, although ap-
proaches A and B are available for both of deconvolution layers
and sub-pixel convolution ones. Deconvolution layers always sat-
isfy eq.(9), so eq.(8) only has to be considered. Therefore, CNNs do
not generate any checkerboard artifacts when each filter Hc in Fig.5
satisfies eq.(3). In approach C, checkerboard artifacts are avoided
by convolving each filter Hc with the kernel H0 inside upsampling
layers.

4. EXPERIMENTS AND RESULTS
The proposed structure without checkerboard artifacts was applied to
the SR methods using deconvolution and sub-pixel convolution lay-
ers to demonstrate the effectiveness. CNNs in the experiments were
carried out under two loss functions: mean squared error (MSE) and
perceptual loss.
4.1. Datasets for Training and Testing
We employed 91-image set from Yang et al. [24] as our training
dataset. In addition, the same data augmentation (rotation and down-
scaling) as in [8] was used. As a result, the training dataset consist-
ing of 1820 images was created for our experiments. Besides, we
used two datasets, Set5 [25] and Set14 [26], which are often used
for benchmark, as test datasets.

To prepare a training set, we first downscaled the ground truth
images IHR with a bicubic kernel to create the LR images ILR,
where the factor U = 4 was used. The ground truth images IHR

were cropped into 72 × 72 pixel patches and the LR images were
also cropped 18×18 pixel ones, where the total number of extracted
patches was 8, 000. In the experiments, the luminance channel (Y)
of images was used for the MSE loss, although the three channels
(RGB) of images were used for the perceptual loss.
4.2. Training Details
Table 1 illustrates CNNs used in the experiments, which were car-
ried out based on CNNs in Fig. 2. For other two layers in Fig.
2, we set (K1, N1) = (5, 64), (K2, N2) = (3, 32) as in [7]. In
addition, the training of all networks was carried out to minimize
the mean squared error 1

2
‖IHR − f(ILR)‖2 and the perceptual loss

1
2
‖φ(IHR) − φ(f(ILR))‖2 averaged over the training set, respec-

tively, where φ calculates feature maps at the fourth layer of the pre-
trained VGG-16 model as in [13]. It is well-known that the percep-
tual loss results in sharper SR images despite lower PSNR values,
and generates checkerboard artifacts more frequently than under the
MSE loss.



(d) Deconv+H0 (Ap. B)

( proposed, 28.99 / 26.81 )

(e) Deconv+H0 (Ap. C)

( proposed, 29.33 / 27.06 )

(c) Deconv+H0 (Ap. A)

( proposed, 28.30 / 26.26 )

(b) Deconv

( 22.06 / 21.58 )

(a) Ground Truth Image

( Set5 mean / Set14 mean )

(f) Sub-pixel

( 22.10 / 21.57 )

(h) Sub-pixel+H0 (Ap. B)

( proposed, 29.03 / 26.84 )

(i) ResizeConv

( 29.26 / 27.03 )

(g) Sub-pixel+H0 (Ap. A)

( proposed, 28.39 / 26.29 )

Fig. 7: Experimental results of super-resolution under perceptual loss (PSNR(dB))
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Fig. 8: Experimental results of super-resolution under MSE loss (PSNR(dB))

Table 1: CNNs used in the experiments
Network Name Upsampling Layer K3 ×K3

Deconv Deconvolution [6] 9× 9
Sub-pixel Sub-pixel Convolution [7] 3× 3
ResizeConv Resize Convolution [14] 9× 9
Deconv+H0 Deconvolution with H0 ( Approach A or B ) 9× 9
Deconv+H0 (Ap. C) Deconvolution with H0 ( Approach C ) 9× 9
Sub-pixel+H0 Sub-pixel Convolution with H0 ( Approach A or B ) 3× 3

For training, Adam [27] with β1 = 0.9, β2 = 0.999 was em-
ployed as an optimizer. Besides, we set the batch size to 4 and
the learning rate to 0.0001. The weights were initialized with the
method described in He et al. [28]. We trained all models for 200K
iterations. All models were implemented by using the tensorflow
framework [29].

4.3. Experimental Results

Figure 7 shows examples of SR images generated under the per-
ceptual loss, where mean PSNR values for each dataset are also il-
lustrated. In this figure, (b) and (f) include checkerboard artifacts,
although (c), (d), (e), (g), (h) and (i) do not include any ones. More-
over, it is shown that the quality of SR images was significantly im-
proved by avoiding checkerboard artifacts. Approach B and C also
provided better quality images than approach A. In Fig. 8, (b) and
(f) also include checkerboard artifacts as well as in Fig. 7, although
the distortion is not so large, compared to under the perceptual loss.
Note that ResizeConv does not generate any checkerboard artifacts,
because it uses a pre-defined interpolation like in [1].

Table 2 illustrates the average executing time when each CNNs
were carried out 10 times for some images in Set14. ResizeConv
needs the highest computational cost in this table, although it does
not generate any checkerboard artifacts. From this table, the pro-

Table 2: Execution time of super-resolution (sec)

Resolution Deconv Deconv+H0 Deconv+H0

of Input Image ( Ap. A or B ) ( Ap. C )
69× 69 0.00871 0.0115 0.0100
125× 90 0.0185 0.0270 0.0227
128× 128 0.0244 0.0348 0.0295
132× 164 0.0291 0.0393 0.0377
180× 144 0.0343 0.0476 0.0421

Resolution Sub-pixel Sub-pixel+H0 ResizeConvof Input Image ( Ap. A or B )
69× 69 0.0159 0.0242 0.107
125× 90 0.0398 0.0558 0.224
128× 128 0.0437 0.0619 0.299
132× 164 0.0696 0.0806 0.383
180× 144 0.0647 0.102 0.450

posed structures have much lower computational costs than with re-
size convolution layers. Note that the result was tested on PC with a
3.30 GHz CPU and the main memory of 16GB.

5. CONCLUSION
This paper addressed a condition to avoid checkerboard artifacts in
CNNs including upsampling layers. The proposed structure can be
applied to both of deconvolution layers and sub-pixel convolution
ones. The experimental results demonstrated that the proposed struc-
ture can perfectly avoid to generate checkerboard artifacts under two
loss functions: mean squared error and perceptual loss, while keep-
ing excellent properties that the SR methods have. As a result, the
proposed structure allows us to offer efficient SR methods without
any checkerboard artifacts. The proposed structure will be also use-
ful for various computer vision tasks such as semantic segmentation,
image synthesis and image generation.
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