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ABSTRACT

The recent development of multimedia has made video editing ac-
cessible to everyone. Unfortunately, forensic analysis tools capa-
ble of detecting traces left by video processing operations in a blind
fashion are still at their beginnings. One of the reasons is that videos
are customary stored and distributed in a compressed format, and
codec-related traces tends to mask previous processing operations.

In this paper, we propose to capture video codec traces through
convolutional neural networks (CNNs) and exploit them as an asset.
Specifically, we train two CNNs to extract information about the
used video codec and coding quality, respectively. Building upon
these CNNs, we propose a system to detect and localize temporal
splicing for video sequences generated from the concatenation of
different video segments, which are characterized by inconsistent
coding schemes and / or parameters (e.g., video compilations from
different sources or broadcasting channels). The proposed solution
is validated using videos at different resolutions (i.e., CIF, 4CIF,
PAL and 720p) encoded with four common codecs (i.e., MPEG2,
MPEG4, H264 and H265) at different qualities (i.e., different con-
stant and variable bitrates, as well as constant quantization parame-
ters).

Index Terms— Video forensics, video codec identification,
temporal splicing, forgery detection, deep learning.

1. INTRODUCTION

Editing a video sequence in a realistic fashion is progressively be-
coming an easy task. On one hand, this is due to the large amount
of powerful yet user-friendly editing softwares that are available on
the market (e.g., Adobe Premiere, Apple Final Cut, etc.). On the
other hand, this is also due to the huge recent advancements in com-
puter vision and deep learning fields, that allow the creation of new
impressive solutions for automatic video editing (e.g., FaceSwap,
DeepFakes, etc.). Although these tools have a positive impact on
video editing, film making, and artistic fields, the ability of easily
forging a video sequence poses new threats to forensic analysts since
malicious video alterations are more difficult to be detected. As a
matter of fact, developing video analysis softwares that are able to
expose video tampering is nowadays a crucial issue in many security
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and news-related applications, e.g., combating fake news, authenti-
cating evidences.

In order to solve this problem, forensic researchers put a huge
effort toward the development of video forensic solutions in the last
few years [1]. In particular, several tasks of interest were identified
and addressed, such as video device identification [2, 3], local tam-
pering detection and localization [4, 5, 6, 7], physical inconsistencies
detection [8], computer-generated video identification [8], video re-
capture understanding [9, 10], frame addition and removal analysis
[11], detection of temporal interpolation [12], fake bitrate detection
[13], video codec identification [14], and multiple compression de-
tection [15].

Despite these solutions prove interesting, the achieved accuracy
tends to decrease in the case of strong video compression [16]. In-
deed, differently from standard image coding schemes, video codecs
perform a complex set of operations to reduce the required bitrate.
As a side effect, many traces exploited by forensic algorithms to
detect processing operations are removed at the encoding stage. In
real-world scenarios, video sequences are often distributed in com-
pressed format due to storage limitations or bandwidth constraints.
As a matter of fact, the loss of such revealing traces is an actual and
frequent threat to forensic analyses.

In this paper, we explore the possibility of leveraging video
codec traces as an asset for forensic purposes. Specifically, we focus
on the detection of video temporal splicing. Every time different
videos are temporally concatenated (e.g., to create a compilation,
but also to add or substitute some frames), the original videos were
seldom encoded with the exact same codecs or qualities. Therefore,
it is possible to exploit coding traces inconsistencies on a frame-
by-frame level, in order to detect possible temporal splicing and
localize the splicing point over time.

To develop the proposed system, we leverage feature learning
capability expressed by Convolutional Neural Networks (CNNs),
which have recently shown very accurate results in many multi-
media forensic tasks [17, 18, 19, 20]. Specifically, we train two
different CNNs to extract video coding scheme and estimate the
quality of video frames, then we search for CNN-extracted feature
inconsistencies in the time domain. If inconsistent codecs and/or
quality information are detected, the video is marked as a temporal
splicing composition and the splicing point in time domain is finally
localized.

To validate the proposed solution, we make use of a dataset
containing sequences at different resolutions (i.e., CIF, 4CIF, PAL
and 720p) encoded with four commonly used video codecs (i.e.,
MPEG2, MPEG4, H264 and H265) at different qualities (i.e., dif-
ferent constant and variable bitrates, as well as constant quantization
parameters). Results show that it is possible to extract codec and
quality information from video frames in a blind fashion through
CNNs. Moreover, the developed splicing detection system can be
generalized to those scenarios where training and test sets mismatch



in terms of video sequences, resolutions, and codec implementa-
tions.

2. PROBLEM FORMULATION

Let us denote with X = [X(0),X(1), ...,X(N � 1)] a video se-
quence composed by N frames X(n). Two video sequences Xi

and Xj can be concatenated in time obtaining the spliced video
Xi,j = [Xi,Xj ] = [Xi(0), ...,Xi(Ni � 1),Xj(0), ...,Xj(Nj �
1)]. The video compilation Xi,j is characterized by a splicing point
at frame number n = Ni � 1, meaning that frames Xi,j(Ni � 1)

and Xi,j(Ni) originally belong to two different video shots (i.e., Xi

and Xj , respectively).
In this work we propose a solution to the video splicing detec-

tion problem. This consists in detecting whether a generic video
sequence under analysis is a composition of at least two shots (i.e.,
as Xi,j), or it is a single original video (i.e., as Xi or Xj), based
only on pixel level analysis (i.e., not exploiting the bitstream or addi-
tional metadata). Moreover, we propose a solution to video splicing
localization problem. This means being able to correctly identify the
splicing point (i.e., the frame at which the splicing begins) in a video
composition (i.e., frame at position n = Ni � 1 as the splicing point
of Xi,j).

Without loss of generality, in this work we consider spliced
videos composed by only two shots (since it can be easily extended
iterating the procedure). Additionally, we consider the case of com-
pilations obtained by splicing shots encoded with different codecs
and/or different quality parameters. This is the case of video compi-
lations obtained with shots coming from different devices, different
broadcasting sources, downloaded from different social media, as
well as shots compressed several times due to post-processing op-
erations (i.e., multiple compression can decrease quality). As, in
a real-world case, videos are typically encoded again after splicing
(i.e., videos are not distributed in raw format), we consider that all
spliced videos are re-encoded.

3. PROPOSED SYSTEM

Given a video X under analysis, the proposed system for video splic-
ing detection and localization can be synthesized by the following
passages:

• A CNN trained to identify codec-related information extracts
a feature vector fC(n) from each frame X(n).

• A CNN trained to infer the compression quality level extracts
a feature vector fQ(n) from each frame X(n).

• Features fC(n) and fQ(n) are concatenated into the vector
fCQ(n) for each frame.

• Inconsistencies between adjacent feature vectors fCQ(n) and
fCQ(n+ 1) are exploited to detect and localize splicing.

In the following, we report a detailed description of each step.

Video Codec CNN. Each video frame X(n) is split into non-
overlapping 64 ⇥ 64 color patches Xp

(n), p 2 [0, P � 1], where
the number of patches P is bound by video resolution. Each patch
is fed to a CNN tailored to solve a four-class classification problem:,
i.e., detecting whether each patch comes from a video encoded using
MPEG2, MPEG4, H264, or H265. Concerning the adopted network
architecture, we empirically noticed a benefit in using a fully convo-
lutional approach. To this purpose we replaced pooling layers with
convolutional layers with stride 2 (i.e., filters are convolved moving
them of two pixels per direction every time, resulting in a factor 2

downsampling). Specifically, the adopted CNN structure is the fol-
lowing one:

• Two convolutional layers with 32 filters of size 5 and stride 1.
• One convolutional layer with 32 filters of size 2 and stride 2

followed by SELU activation.
• Two convolutional layers with 48 filters of size 4 and stride 1.
• One convolutional layer with 48 filters of size 2 and stride 2

followed by SELU activation.
• Two convolutional layers with 64 filters of size 4 and stride 1.
• One convolutional layer with 64 filters of size 2 and stride 2

followed by SELU activation.
• One convolutional layer with 128 filters of size 3 and stride 1.
• One fully connected layer with 128 output neurons, followed

by SELU activation.
• One fully connected layer with 4 output neurons, followed by

Softmax activation.
The amount of trainable parameters is 325.140, thus making the net-
work deep (i.e., 12 layers) but fast to train and deploy.

For each patch Xp
(n), the network’s output is a four-element

feature vector

fpC (n) = [fp
H264(n), f

p
H265(n), f

p
MPEG2(n), f

p
MPEG4(n)], (1)

where each element represents the likelihood of the p-th patch from
the n-th frame being encoded with one of the four considered codecs.
Notice that, due to final Softmax activation, features vectors are non-
negative and sum to one, thus being naturally normalized. The fi-
nal frame-level codec feature vector fC(n) is obtained by averaging
patches’ feature vectors as

fC(n) =
1

P

P�1X

p=0

fpC (n), (2)

where all operations are performed in an element-wise fashion. This
feature vector can be interpreted in different ways. On the one hand,
we can consider each element as the likelihood of frame X(n) being
encoded with a given codec in the set of considered four ones. On
the other hand, we can simply interpret the distribution of the four
likelihoods fH264(n), fH265(n), fMPEG2(n) and fMPEG4(n) as a gen-
eral descriptor capturing codec traces. Indeed, for splicing detection
and localization, we are not required to exactly detect the used codec
for each frame, but we are more interested in observing some sort of
codec incoherency over time.

Video Quality CNN. As for the previous step, each video frame
X(n) is split into non-overlapping 64 ⇥ 64 color patches Xp

(n).
Each patch is additionally processed using the denosing algorithm
presented in [21] to extract patch noises Wp

(n). Noises are fed
to a CNN trained to solve a four-class classification problem, i.e.
to detect whether the patch comes from a frame encoded with low
(low), medium-low (m-low), medium-high (m-high) or high (high)
quality. In this case, we resorted to a more standard architecture
similar to the one proposed in [22]:

• One convolutional layer with 32 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

• One convolutional layer with 64 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.



(a) Pristine

(b) Composition
Fig. 1. Feature vector for each frame of a pristine video (a) and
a video composition (b). Composition codec changes after 100
frames.

• One convolutional layer with 96 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

• One convolutional layer with 128 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

• One convolutional layer with 128 filters of size 3 and stride 1,
followed by Batch Normalization, ReLU activation, and Max
Pooling of size 2 and stride 2.

• One fully connected layer with 128 output neurons, followed
by Dropout with probability 0.5.

• One fully connected layer with 4 output neurons, followed by
Softmax activation.

For each patch noise Wp
(n), the network’s output is a four-

element feature vector

fpQ(n) = [fp
low(n), f

p
m-low(n), f

p
m-high(n), f

p
high(n)], (3)

where each element represents the likelihood of the patch coming
from a frame encoded with different quality in a set of four possible
choices. Also in this case, we obtain the final frame descriptor fQ(n)
by averaging feature vectors coming from all the patches extracted
from the same frame

fQ(n) =
1

P

P�1X

p=0

fpQ(n), (4)

where all operations are performed element-wise. In our scenario,
we can interpret this feature vector as a compact descriptor of frame
coding quality. Due to Softmax normalization, also this feature vec-
tor is bound to be non-negative and all elements sum to one.

Splicing Detection and Localization. After feature vectors
fC(n) and fQ(n) are extracted from a frame, we concatenate them
into a single eight-element feature vector fCQ(n) = [fC(n), fQ(n)].
Fig. 1a shows an example of fCQ(n) for a video composed by 200
original frames encoded with high-quality MPEG2, whereas Fig. 1b
shows an example of video composed by 100 frames encoded with
high-quality H264 spliced with 100 frames encoded with high-
quality MPEG4. In the second example, it is possible to observe an
evident feature vector inconsistency at frame number 100.

To automatically detect this inconsistency, thus detect splicing,
our method works as follows. We compute the mean squared error

(a) Pristine

(b) Composition
Fig. 2. MSE between adjacent feature vectors for a pristine video (a)
and a video composition (b). Composition codec changes after 100
frames as denoted by the star. Videos are the same used for Fig. 1.

(MSE) between feature vectors belonging to adjacent frames

�fCQ(n) = MSE(fCQ(n), fCQ(n+ 1)). (5)

We then compare the maximum value of �fCQ(n) with a threshold
�. If max(�fCQ(n)) > �, then the video is detected as spliced.
In this case, the maximum �fCQ(n) position represents the splicing
point

n̂ = argmax

n
(�fCQ(n)). (6)

Fig. 2 shows �fCQ(n) referred to videos used for the example in
Fig. 1 on a log-scale. It is possible to observe that, in case of splicing
(i.e., Fig. 2b), the splicing point becomes evident.

4. SIMULATIONS AND RESULTS

In this section we report all the details about the performed simula-
tions in terms of dataset generation and training protocols. Then we
report all the achieved results, separately evaluating each step of the
proposed method.

Datasets. In order to train the two different CNNs and test the
whole system, we prepared different datasets by compressing a set
of diverse training sequences with different coding set-up, frame res-
olutions, and codec types 1. This is essential to prove CNN general-
ization capability and evaluate the whole pipeline.

To train the video codec CNN, we built dataset DHR
train composed

by 300 videos at high resolution. We started from five uncompressed
video sequences, namely: ducks take off (720p), stockholm (720p),
ice (4CIF), harbour (4CIF), parkrun (720p). Each sequence has
been encoded using FFmpeg to obtain 60 different versions com-
bining codecs and qualities. As codecs we considered MPEG2,
MPEG4, H264, H265. As quality, we considered: fixed quantization
parameter (QP) ranging from 1 to 10; constant bitrate set to 2 Mb/s,
4 Mb/s and 6 Mb/s; variable bitrate set to 2 Mb/s, 4 Mb/s and 6

Mb/s. As group of pictures (GOP) we used 30 frames.
To validate the video codec CNN (i.e., select the trained CNN

model), we built dataset DHR
val composed by 300 videos at high reso-

lution. This is obtained following the same procedure of DHR
train, start-

ing from other original sequences: park joy (720p), parkrun (720p),
shields (720p), soccer (4CIF), and stockholm (720p).

To test the video codec CNN on a completely unrelated set,
we built dataset DLR

test composed by 1.672 videos at low resolution

1Original videos at: https://media.xiph.org/video/derf/



(a) Validation on DHR
val (b) Validationon DLR

test (c) Validation on DSR
quality

Fig. 3. Video codec and coding quality identification confusion ma-
trices. Results are shown at patch level.

(i.e., CIF). We started from 19 sequences at CIF resolution (akiyo,
crew, mother, soccer, bridgeclose, flower, news, table, city, foreman,
paris, tempete, coastguard, hall, salesman, waterfall, container, mo-
bile, sign irene), and encoded them using FFmpeg mixing codecs
and qualities. As codecs we considered MPEG2, MPEG4, H264,
H265. As quality, we considered: fixed quantization parameter (QP)
ranging from 1 to 32 with step 2; constant bitrate set to 500 Kb/s,
1 Mb/s and 2 Mb/s; variable bitrate set to 500 Kb/s, 1 Mb/s and 2

Mb/s. As group of pictures (GOP) we used 10 frames.
To train and validate the coding quality CNN, we prepared

dataset DSR
quality of 80 videos at PAL standard resolution. We started

from five uncompressed sequences, namely: crew, ducks take off,
harbour, ice and soccer. We encoded them using four different
versions of H264 reference software (i.e., HM8.0, HM9.2, HM10.1
and HM12) in order to accurately control the quantization parameter
set-up. We set low, m-low, m-high and high qualities to fixed QP
equal to 5, 10, 15 and 20. As GOP size we used 10 frames. The
75% of the extracted frames have been used for training, the rest for
validation.

Finally, to test the whole system, we prepared dataset Dsplice
composed by 100 spliced and 100 original videos. We started from
five uncompressed sequences at 720p resolution never used in other
sets: four people, in to tree, johnny, kristen and sara, old town cross.
Using FFmpeg, we encoded them using the four codecs MPEG2,
MPEG4, H264, H265, with GOP set to 30, and fixed QP ranging
from 3 to 20. A random set of these sequences (trimmed to 200
frames) has been used as pristine. Another random set has been used
to create 100 compositions of 200 frames each, made by splicing
together two different portions of the same video encoded with dif-
ferent codecs and / or parameters. Composition are then re-encoded
using high-quality H264.

Notice that spliced videos do not present any scene change, as
the same video was used for the head and tail. Simply the first 100
frames are encoded differently with respect to the other ones. This is
important to assess that our algorithm does not simply detect scene
changes, but actually localizes coding changes.

Training Strategy. Both CNNs have been trained using the
same methodology. Categorical crossentropy has been used as loss
function. Adam optimizer with standard parameters and learning
rate has been used for loss minimization. The best model has been
selected as the one minimizing loss on the validation set over 100
epochs.

Video Codec Identification Results. Fig. 3a and Fig. 3b show
confusion matrices obtained in terms of codec identification by the
video codec CNN at patch-level on validation dataset DHR

val and test
dataset DLR

test, respectively. It is interesting to notice how results
are in line on both datasets, despite sequences have been generated
starting from content at different resolutions and using different bi-

Fig. 4. Temporal splicing detection ROC curve using different sets
of features.

Table 1. Perfect detection rate and mean absolute error in frames
using different approaches.

Method Perfect Detection Rate Mean Absolute Error
�fQ 0.520 22.25 frames
�fC 0.736 12.94 frames
�fCQ 0.856 7.12 frames

trates. Moreover, we can observe that H264 tends to be confused
with H265, while MPEG2 is confused more with MPEG4. This is
due to natural similarities among these families of codecs.

Quality Identification Results. Fig. 3c shows the confusion
matrix obtained in terms of video coding quality detection on the
validation set DSR

quality. Also in this case we can notice good average
performance of the CNN in distinguishing the four selected quality
levels for each patch.

Temporal Splicing Detection and Localization Results. In or-
der to evaluate the proposed splicing detection pipeline, we com-
puted Receiver Operating Characteristic (ROC) curves by compar-
ing max(�fCQ(n)) value for each sequence in Dsplice with a variable
threshold �. Fig. 4 shows the system performance using different
sets of features. Using only quality-based features (i.e., �fQ), the
area under the curve is 0.86. By using only features coming from
the codec-based CNN (i.e., �fC), AUC increases to 0.93. Anyway,
the best result is obtained when all features are jointly used (i.e.,
�fCQ), providing an AUC of 0.96.

In terms of localization, we report in Table 1 the perfect detec-
tion rate (i.e., the percentage of times we estimate the exact splicing
point), and the mean absolute error (i.e., how far on average is the
estimated splicing point from the true one). Also in this case, it is
possible to notice that the best results are obtained using all features
jointly (i.e., 85.6% of perfect detection, and average error of less
than 8 frames).

5. CONCLUSIONS

In this paper we presented a video temporal splicing localization and
detection system exploiting only traces left by video coding. To cap-
ture these traces, we separately train two CNNs: one devoted to cap-
ture characteristics of the used video codec; one devoted to capture
characteristics of the used coding quality. The CNNs and the whole
system are validated on different dataset to avoid overfitting prob-
lems and assess generalization capability.

Being able to capture coding traces on small frame patches paves
the way to the possibility of extending the proposed solution to local
tampering detection. Future research will be devoted to study coding
footprints locally on each frame, in order to detect possible copy-
move and other types of forgeries.
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[20] L. Bondi, S. Lameri, D. Güera, P. Bestagini, E. J. Delp, and S.
Tubaro, “Tampering detection and localization through cluster-
ing of camera-based cnn features,” IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW),
2017.

[21] M. K. Mihcak, I. Kozintsev, K. Ramchandran, and P. Moulin,
“Low-complexity image denoising based on statistical model-
ing of wavelet coefficients,” IEEE Signal Processing Letters
(SPL), vol. 6, pp. 300–303, 1999.
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