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ABSTRACT

Building on top of the success of generative adversarial net-
works (GANs), conditional GANs attempt to better direct
the data generation process by conditioning with certain ad-
ditional information. Inspired by the most recent AC-GAN,
in this paper we propose a fast-converging conditional GAN
(FC-GAN). In addition to the real/fake classifier used in
vanilla GANs, our discriminator has an advanced auxiliary
classifier which distinguishes each real class from an extra
‘fake’ class. The ‘fake’ class avoids mixing generated data
with real data, which can potentially confuse the classifica-
tion of real data as AC-GAN does, and makes the advanced
auxiliary classifier behave as another real/fake classifier. As a
result, FC-GAN can accelerate the process of differentiation
of all classes, thus boost the convergence speed. Experimental
results on image synthesis demonstrate our model is compet-
itive in the quality of images generated while achieving a
faster convergence rate.

Index Terms— Generative adversarial networks, condi-
tioning, fast convergence, image synthesis

1. INTRODUCTION

Generating high-resolution and photo-realistic images has al-
ways been one of the long-standing goals in the generative
modeling community. Image synthesis is of significance to
many applications, such as image editing, image inpainting,
image translation, pattern recognition, etc. [1, 2, 3, 4, 5].
In recent years, deep generative models have brought break-
throughs in this area. Three main branches of methods have
been developed, including Variational Auto-Encoder (VAE)
[6], Generative Adversarial Networks (GANs) [7], and Pixel-
RNN/PixelCNN [8, 9].

Among these methods, VAEs tend to blur the rich de-
tails in the generated images and the sequential generation
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of PixelRNN/PixelCNN is time-consuming. On the contrary,
GANs can quickly generate images with more photo-realistic
details. A GAN model consists of two competing players: the
discriminator and the generator, where the generator takes as
inputs latent variables and generates synthesized data to fool
the discriminator while the discriminator tries to distinguish
between synthesized data and real ones.

However, the vanilla GANs have no control over the mode
of the generated results. For instance, if we train a vanilla
GAN model on a digits dataset containing digits 0, 1, ..., 9,
then with a latent variable as input, a random digit among
these 10 digits will be generated. In many cases, it is neces-
sary to direct the generation process with certain conditions,
such as age conditioning for face regression/progression, text
conditioning for text-to-image translation, and image condi-
tioning for image-to-image translation [3, 4, 10, 11, 12].

There have been a couple of studies focusing on differ-
ent ways of conditioning the vanilla GANs [13, 14, 15, 16].
For example, the pioneer, CGAN [13] performs the condi-
tioning by feeding conditioned attributes into both the gener-
ator and discriminator as additional inputs while keeping the
other parts the same as vanilla GANs. Since CGAN does not
have any specific constraint on the classes of the generated
data, it can easily neglect the conditioned attributes without
deliberately-designed architectures. The most recent devel-
opment in the family of conditional GAN is AC-GAN [15],
which introduces an auxiliary classifier for the discriminator.
The auxiliary classifier assigns each real sample to its spe-
cific class and each generated sample to the class correspond-
ing to the generator input. The overall loss is then defined
by combining the discrimination loss (source loss) between
real/fake samples and the classification loss over all condi-
tioned classes. The auxiliary classifier better directs AC-GAN
to generate desired images of different classes. However, as-
signing fake data with their real class labels the same way as
real data can potentially confuse the auxiliary classifier.

Inspired by AC-GAN, we propose FC-GAN that intro-
duces an advanced auxiliary classifier for the purposes of fast
convergence and improved quality. It achieves these goals in
two aspects. First, the auxiliary classier distinguishes each at-
tribute class from an extra ‘fake’ class. In this way, real data
are categorized into real classes and generated data are cat-
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egorized into a ‘fake’ class rather than having both real and
generated samples categorized into real classes as AC-GAN
does. The proposed advanced auxiliary classifier effectively
accelerates the process of differentiation of each class. Sec-
ond, the existence of the ‘fake’ class makes the auxiliary clas-
sifier also behave like another real/fake classifier, which can
potentially boost the convergence speed.

The paper is organized as follows. Section 2 demonstrates
the proposed FC-GAN in detail. The comprehensive experi-
mental results are shown in Section 3. The work is concluded
in Section 4.

2. PROPOSED APPROACH

2.1. GAN

A GAN model consists of two competing players: the dis-
criminator D(θd), and the generator G(θg). The generator
and discriminator have opposite objectives during training,
where the discriminator is trained toward distinguishing be-
tween synthesized and real data while the generator is trained
to fool the discriminator with synthesized data.

The objective function for GAN can be formulated as a
minimax optimization problem in Eq. (1),

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))]+

Ez∼pz(z)[log(1−D(G(z)))] (1)

where pdata(x) denotes the true distribution of real data
Xreal, and pz(z) is the prior distribution of latent variable z,
also known as noise. The generator G takes as input sam-
ples z from pz and outputs synthesized data Xfake = G(z).
The discriminator is a real/fake classifier which distinguishes
synthesized data from real ones. According to game theory,
in the space of arbitrary functions for G(θd) and D(θg), a
unique solution exists when the Nash equilibrium is achieved
[7].

2.2. CGAN and AC-GAN

The basic GAN framework can be extended to a conditional
GAN model with certain auxiliary information y. CGAN per-
forms the conditioning by feeding y into both the discrimina-
tor and the generator as an extra input. y and the latent vari-
able z are combined as the input for the generator while y and
the sample x are concatenated as the input for the discrimina-
tor.

AC-GAN introduces an auxiliary classifier built on the
discriminator to give a probability distribution over the class
labels for both real data and generated data. The generator
takes both latent variables and class information as input to
generate synthesized images Xfake. Every generated sam-
ple has a corresponding class label c in addition to the latent
variable z. The discriminator outputs two probability dis-
tributions. One is over sources, i.e., real or fake data, and

the other is over the class labels, denoted as P (S|X) and
P (C|X), respectively. The overall objective function com-
bines the source loss and classification loss.

2.3. Proposed FC-GAN

The proposed FC-GAN, shown in Fig. 1, belongs to the fam-
ily of conditional generative adversarial networks. The setting
here is the same as other conditional GANs, where the real
data Xreal could be categorized into N classes, [C1, ..., CN ]
according to the conditioned information y. We introduce a
new class Cfake to denote the category of data generated by
the generator. We thus design an advanced auxiliary classi-
fier on top of the discriminator, which gives a probability over
N+1 class labels, corresponding to [C1, ..., CN , Cfake]. Un-
like AC-GAN, generated data are not assigned to one of the
N real classes during the training of the discriminator.

Fig. 1: The FC-GAN framework.

We perform the conditioning on the generator G by feed-
ing class information C as well as latent variable Z as the in-
put. Like AC-GAN, we also define two losses, the source loss
and the classification loss. However, because of the additional
Cfake class, the classification loss is defined differently.

For the source loss, we train the discriminator D to maxi-
mize the probability of assigning real data and generated data
to their correct source classes S, i.e., real vs. fake. The source
loss function for the discriminator D is defined as

LD
s = −(E[logP (S = real|Xreal)]+

E[logP (S = fake|Xfake)]).

And we train the generatorG to maximize the probability that
D assigns the generated data to real data class, with the loss
function defined as

LG
s = −E[logP (S = real|Xfake)].

For the classification loss, we train the discriminator D to
maximize the probability of assigning real data to the correct
class Ci out of [C1, ..., CN ] and maximize the probability of
assigning generated data to the class Cfake, i.e., the classifi-
cation loss for D is defined as

LD
c = −(E[logP (C = Ci|Xreal)]+

E[logP (C = Cfake|Xfake)]).



And G is trained to maximize the probability that D assigns
each generated sample to the class Ci corresponding to the
input class of G, i.e., the classification loss for G is defined as

LG
c = −E[logP (C = Ci|Xfake)].

The overall loss function consists of both the source loss
and the classification loss, where the overall loss for the dis-
criminator D is defined in Eq. (2),

LD = LD
s + LD

c

= −(E[logP (S = real|Xreal)] + E[logP (S = fake|Xfake)])−

(E[logP (C = Ci|Xreal)] + E[logP (C = Cfake|Xfake)])

= −(Ex∼pdata(x)[logD1(x|y)] + Ez∼pz(z)[log (1−D1(G(z|y)))])

−(Ex∼pdata(x)[logD
i
2(xi|y)] + Ez∼pz(z)[log(1−D

fake
2 (G(z|y)))])

(2)
and the overall loss for the generator G is defined in Eq. (3),

LG = LG
s + LG

c

= −E[logP (S = real|Xfake)]− E[logP (C = Ci|Xfake)]

= −Ez∼pz(z)[log (D1(G(z|y)))])

−Ez∼pz(z)[log(D
i
2(G(z|y)))]),

(3)
where y represents the conditioned information, D1 and D2

represent the real/fake classifier and the advanced auxiliary
classifier, respectively, the subscript in xi denotes that the
ground truth class of sample x isCi,Di

2(xi) denotes the prob-
ability that the advanced auxiliary classifier assigns the sam-
ple xi to the class Ci, and Dfake

2 (x̂) denotes the probabil-
ity that the advanced auxiliary classifier assigns the generated
sample x̂ = G(z|y) to the class Cfake.

3. EXPERIMENTS AND RESULTS

3.1. Datasets and Network Structure

We utilize two popular benchmark datasets, MNIST [17] and
CIFAR-10 [18], for the evaluation. The MNIST dataset con-
tains 10 digit classes, and images are centered and resized to
size 28× 28. The CIFAR-10 dataset consists of 32× 32 color
images in 10 classes. For both datasets, we train the models
conditioned on their class labels.

We focus our comparisons to AC-GAN since it represents
the state-of-the-art in the development of conditioning GAN.
As far as we know, there are no official public implementa-
tions for AC-GAN. We adopt the version included in Keras
[19] and implement the proposed FC-GAN based on it.

The FC-GAN structure for MNIST is shown in Table 1
where Conv, Deconv, and FC represent the convolution
layer, deconvolution layer, and fully connected layer, respec-
tively. The structure for CIFAR-10 is similar with the only
difference being the size of the feature maps due to the dif-
ferent input image sizes. The number of classes N for both

MNIST and CIFAR-10 datasets is 10. Following DCGAN
[20, 21], in the generator, we use ReLU activation for all hid-
den layers and Tanh for the output layer. We use Leaky ReLU
activation for all hidden layers in the discriminator. The num-
ber of outputs of the auxiliary classifier is N +1, correspond-
ing to the N + 1 classes, [C1, ..., CN , Cfake].

We use the uniform distribution on [−1, 1] for the noise
Z with a dimension of 100. We also experiment with
Gaussian distribution but find no performance difference.
The Adam optimizer [22, 23] is employed with parameters
α = 0.00002, β1 = 0.5, β2 = 0.999. And the batch size is
100. The weights are initialized with truncated normal dis-
tribution. The above settings are consistent for both MNIST
and CIFAR-10 datasets.

Discriminator Generator
Layer Filter/Stride Output Size Layer Filter/Stride Output Size

Conv1 3× 3 /2 32× 14× 14 FC1 1024
Conv2 3× 3 /1 64× 14× 14 FC2 128× 7× 7
Conv3 3× 3 /2 128× 7× 7 Deconv1 5× 5/2 256× 14× 14
Conv4 3× 3 /1 256× 7× 7 Deconv2 5× 5/2 128× 28× 28

D source 1 Conv3 2× 2/1 1× 28× 28
D class N+1

Table 1: The FC-GAN architecture for MNIST dataset.

3.2. Qualitative and Quantitative Analyses

Comparison between different generative models is very chal-
lenging and good performance with respect to one criterion
does not imply good performance with respect to other crite-
ria [24]. We adopt best-known evaluation criteria, including
visual fidelity, Parzen window, and inception score, to have a
qualitative and quantitative analysis of the proposed model.

3.2.1. Visual Fidelity

The most common metric for generative image models is vi-
sual fidelity of generated samples [24]. Fig. 2 shows the gen-
erated images of AC-GAN and FC-GAN after 10, 20, and
50 epochs on the MNIST dataset. Each column is generated
by fixing one label class and randomly sampling the latent
variable. We observe that the proposed model can achieve
promising results with 10 epochs while AC-GAN needs 20
or more epochs to achieve comparable results. We also ob-
serve that the conditioned class label dominates the category
of generated images. Varying the latent variable can generate
different digit styles.

The visual fidelity difference between AC-GAN and FC-
GAN could also be visualized by the source loss, shown
in Fig. 3. The solution to GANs is the Nash equilibrium
which corresponds to D(x) = D(G(z)) = 1

2 . Hence, the
source losses for the generator and the discriminator are
LG
s = − ln 1

2 = 0.693 and LD
s = −(ln 1

2 + ln 1
2 ) = 1.386,

respectively. From Fig. 3, we observe that FC-GAN starts
converging at around epoch 13 while AC-GAN does this at



(a) AC-GAN 10 epochs (b) AC-GAN 20 epochs (c) AC-GAN 50 epochs

(d) FC-GAN 10 epochs (e) FC-GAN 20 epochs (f) FC-GAN 50 epochs

Fig. 2: The generated images comparison with different epochs on
the MNIST dataset.

around epoch 20. We also compare the synthesized images of

(a) AC-GAN source loss (b) FC-GAN source loss

Fig. 3: The comparison of source loss on MNIST dataset.

FC-GAN and AC-GAN with 20, 50 and 200 training epochs
and the source loss on CIFAR-10 in Figs. 4 and 5, respec-
tively. Similar trends are observed here as in the MNIST
experiments.

3.2.2. Parzen Window Estimate

Exact likelihood of generative adversarial networks is not
tractable, and the Parzen window estimate is commonly used
as an alternative approach. Our experimental setting follows
[7]. We first calculate σ with a validation set and then fit
a Parzen window on randomly generated samples from the
generator. Results on the MNIST and CIFAR-10 datasets
are reported in Table 2. Compared with AC-GAN, FC-GAN
achieves a slight improvement on MNIST and a significant
improvement on CIFAR-10.

3.2.3. Inception Score

Inception score was proposed for measuring the performance
of generative models which has a high correlation with the

(a) AC-GAN 10 epochs (b) AC-GAN 50 epochs (c) AC-GAN 200 epochs

(d) FC-GAN 20 epochs (e) FC-GAN 50 epochs (f) FC-GAN 200 epochs

Fig. 4: The generated images comparison with different epochs on
the CIFAR-10 dataset.

(a) AC-GAN source loss (b) FC-GAN source loss

Fig. 5: The comparison of source loss on CIFAR-10 dataset.

quality evaluated by human annotators [15, 25]. We show
the inception score comparison on the MNIST and CIFAR-10
datasets in Table 3. The MNIST dataset is much less challeng-
ing than CIFAR-10. FC-GAN achieves results comparable to
AC-GAN on MNIST, but it does significant improvement on
CIFAR-10.

4. CONCLUSIONS

In this paper, we proposed FC-GAN, a fast-converging condi-
tional generative adversarial network. An advanced auxiliary
classifier (AC) was introduced for the discriminator, which
can distinguish each real class from an extra ‘fake’ class. Ad-
ditionally, the advanced AC also behaves as another real/fake
classifier. Experimental results showed that the proposed FC-

MNIST CIFAR-10
AC-GAN 168.0± 1.4 581.8± 5.4
FC-GAN 175.0± 1.5 646.9± 5.3

Table 2: Parzen window estimates on MNIST and CIFAR-10.



MNIST CIFAR-10
AC-GAN 2.216± 0.04 4.190± 0.08
FC-GAN 2.238± 0.03 6.360± 0.14

Table 3: The inception scores on MNIST and CIFAR-10.

GAN effectively accelerates the process of differentiation of
all classes and helps to generate competitive synthesized im-
ages.
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