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ABSTRACT

In recent years, geotagged social media has become popu-
lar as a novel source for geographic knowledge discovery.
Ground-level images and videos provide a different perspec-
tive than overhead imagery and can be applied to a range
of applications such as land use mapping, activity detection,
pollution mapping, etc. The sparse and uneven distribu-
tion of this data presents a problem, however, for generating
dense maps. We therefore investigate the problem of spatially
interpolating the high-dimensional features extracted from
sparse social media to enable dense labeling using standard
classifiers. Further, we show how prior knowledge about
region boundaries can be used to improve the interpolation
through spatial morphing kernel regression. We show that
an interpolate-then-classify framework can produce dense
maps from sparse observations but that care must be taken
in choosing the interpolation method. We also show that the
spatial morphing kernel improves the results.

Index Terms— Feature interpolation, kernel regression,
land use classification, convolutional neural network

1. INTRODUCTION

Mapping geographic phenomena on the surface of the Earth
is an important scientific problem. Remote sensing is a tradi-
tional approach in which analysis is performed on overhead
images from satellites and aircraft. This can produce dense
maps but is limited by the overhead view. For example, one
cannot see inside buildings.

The widespread availability of geotagged social media has
enabled novel approaches to geographic discovery. In partic-
ular, “proximate sensing” [1]] using ground-level images and
videos available at sharing sites like Flickr and YouTube pro-
vides a different perspective from remote sensing, one that
can see inside buildings and detect phenomena not observ-
able from above. Proximate sensing has been applied to map
land use classes [2l], public sentiment [3[], human activity [4],
air pollution [S]], and natural events [6], among other things.

A fundamental challenge in using geotagged social media
to create dense maps is its sparse and uneven spatial distri-
bution. For example, figure [I] shows the spatial distribution

Fig. 1. Distribution of Flickr images in San Francisco. While
these images can be used to map geographic phenomena
such as land use, the resulting maps are sparse and uneven.
We therefore investigate methods to interpolate the high-
dimensional image features before performing classification.

of Flickr images for a region of San Francisco. Even if one
was able to use these images to accurately label land use, for
example, the resulting map would itself be sparse and uneven.

We therefore investigate an alternate approach in which
the high-dimensional features extracted from the geotagged
social media are spatially interpolated before classification is
performed. To our knowledge, there has been very little work
on this interpolate-then-classify problem. Workman et al. in
[7] spatially interpolate features extracted from Google Street
View images to match the spatial density of features extracted
from overhead imagery. But, they do not investigate how best
to do the interpolation. Our work in this paper performs an
in-depth evaluation of the interpolate-then-classify problem
using synthetic as well as real datasets.

We also investigate how to use prior knowledge about spa-
tial heterogeneity to modulate the interpolation. We take in-
spiration from [8]] which proposes a novel kernel that incorpo-
rates prior knowledge on spatial similarities, discontinuities,
and physical and administrative boundaries to spatially inter-
polate a continuous variable. For example, [8] shows that
knowledge of building boundaries can improve the interpo-
lation of temperature as the indoor and outdoor temperature
can be quite different. However, [8] only interpolates a single
continuous variable and the interpolation is the final result—
no classification is performed. We instead interpolate high-
dimensional features extracted by convolutional neural net-
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Fig. 2. Our proposed interpolate-then-classify framework. The convolutional layers of a CNN (blue) are used to perform
feature extraction on sparsely located ground-level images. We investigate various interpolation methods (red) including ones
that incorporate prior knowledge of spatial heterogeneity. The fc layer of the CNN (yellow) is then used to perform dense

classification.

works (CNNs) with the goal of performing dense classifica-
tion. The prior knowledge is incorporated through a graph
Laplacian. We consider two types of graph Laplacians, one
constructed using a mesh grid and another constructed using
the sparse feature locations themselves.

To summarize the salient aspects of our work, we investi-
gate the novel problem of spatially interpolating high dimen-
sional features for dense geographic classification. We incor-
porate prior knowledge of spatial heterogeneity through spa-
tial morphing kernels. And, we show results using synthetic
as well as real data for mapping land use.

2. METHODOLOGY

Our framework consists of three steps as shown in figure 2}
feature extraction, feature interpolation, and dense classifica-
tion. We use a pre-trained CNN without the final fully con-
nected (fc) layers to perform the feature extraction. We inves-
tigate various interpolation methods including ones that in-
corporate prior knowledge of spatial heterogeneity. Finally,
the fc layers of the CNN are used to classify the densely in-
terpolated features.

2.1. Convolutional Neural Network

Our CNN is a ResNet-101 [9] model that has been trained
to label ground-level images as depicting one of 45 different
land use classes. (Please see [10]] for more details on this
model.) We separate the network into two parts: 1) a feature
extractor consisting of the convolutional layers that outputs a
2,048 dimensional feature vector, and 2) a classifier consist-
ing of the fc layer.

2.2. Interpolation

Our interpolation problem is defined as follows. Suppose we
have a sparse set of n image locations S={s1, sa, ..., s, } from

which we have extracted high-dimensional features f(s;).
Our goal is to use these features and their locations to esti-
mate the feature at a novel location f(1). We can then create
a dense feature map by densely sampling the locations [. We
now describe the different interpolation methods we consider.

2.2.1. Inverse Distant Weighting

Inverse distance weighting (IDW) [[L1]] is a commonly used
approach to interpolate a spatially smooth surface. IDW as-
sumes that locations that are close to one another are more
alike than those that are far apart. IDW interpolation is com-
puted as

ifd(l, s;) # 0 for all 7.
if d(l, s;) = 0 for some i.

N
f(l) — {Zi—l wi(l)f(si)7 (1)

f(si),

where N is the number of locations used to perform the inter-
polation, and w; (1) = 1/d(l, s;) is the weight given to feature
of the ith location. d(!, s;) is commonly computed as the Eu-
clidean distance between locations [ and s; in 2D geographic
space.

2.2.2. Kernel Regression

We also interpolate the features using Nadaraya-Waston ker-
nel regression as is done in [7]. This interpolation is computed
as

vazl wi(l)f(si)
S wi(D)

where w; (1) = k(x,x) is a kernel based on the locations x
and x . In our case, x is the 2D location [ and x is the 2D
location s;. We consider a standard Gaussian kernel as well
as a spatial morphing kernel inspired by [8].

fl) = 2)



Table 1. Quantitative results on the synthetic data. The rows indicate the number of images per region. The results under the
columns IDW, Gaussian, SMSK, and SMMK is the average mloU over 20 trials. The noise column shows the percentage of

spurious classes introduced by the interpolation method to the left.

Method | IDW | noise (%) | Gaussian | noise (%) | SMSK | noise (%) | SMMK | noise (%)
1 45.5 13.4 72.6 1.9 73.2 0.5 70.2 2.9
2 56.8 3.1 74.6 1.5 77.2 0.1 75.5 1.5
3 61.1 4.8 77.1 1.3 77.8 0.2 79.8 1.5
5 68.1 17.8 81.3 3.7 81.8 04 83.9 2.3
10 80.5 4.9 83.6 1.9 84.7 0.0 87.4 1.8
Gaussian kernel: k (x,x) = exp(—d(l,s;;%)?) where  3.1. Synthetic Data

d(l,s;;X) is the normalized Euclidean distance. The di-
agonal covariance matrix X controls the kernel bandwidth.
For our 2D case, > contains two non-zero values which are
learned during a training phase.

Spatial morphing kernel: [8] describes how a graph Lapla-
cian based on spatial adjacency/connectivity can incorporate
prior spatial knowledge into the regression kernel. First, an
adjacency matrix W is computed in which w;; = 1 if loca-
tions ¢ and j are connected and w;; = 0 otherwise. This
can encode, for example, the connectivity between locations
given building boundaries, etc. The graph Laplacian is then
computed as L = D — W where D is the diagonal node de-
gree matrix in which d;; = Y ; wij. The spatial morphing
kernel is then computed as

k(x,x) = k(x,x ) —kX(I+~LK) 9Lk (3)

where I is the identity matrix, K={k(z;, z;)}; j=1,. .~ is the
kernel matrix for all data samples, and ky and k. are the
vectors [k(z,21), ..., k(z, xn)] and [k(z', 21),...k(z , zxn)].
(k(-,-) is the Gaussian kernel above.) The hyper parameter -y
controls how much the kernel is spatially morphed based on
the prior knowledge.

We compute the adjacency matrix W in two ways. First,
similar to [8]], a dense mesh grid is laid over the study area and
the locations of this grid form the nodes of the graph. We refer
to this as the spatial morphing mesh kernel (SMMK). Second,
the nodes of the graph are the locations of our observed fea-
tures (our images). We refer to this as the spatial morphing
sample kernel (SMSK). In either case, we set w;; = 1 if lo-
cations 4 and j are in the same region and w;; = 0 otherwise.

3. EXPERIMENTS

We focus on the problem of dense land use mapping from
sparse ground level images. We conduct experiments using
synthetic as well as real data. We know the ground truth land
use map for the synthetic data which allows us to perform
quantitative evaluation. The Gaussian kernel bandwidth is
tuned using leave-one-out cross validation, and we set v =
100 for the spatial morphing kernels.

We partition a 100m x 100m piece of land into three regions
with different land use classes as shown on the left in figure
[] This is considered the ground truth. Our goal is to generate
this map at the Im x 1m scale from sparsely located images.
We then randomly pick three (real) ground level images from
our San Francisco dataset with different land use labels (as
assigned by our CNN). We then place these images at random
locations in the ground truth regions. We consider different
densities of images: 1, 2, 3, 5, and 10 per region. See ﬁgure
for example configurations.

We then perform feature interpolation over the entire 100
x 100 area. We compute one feature per 100 x 100 loca-
tion which is then used to classify the location. The resulting
map is compared to the ground truth by computing the mean
Intersection over Union (mloU) [12] between the predicted
regions and the true regions using the 100 x 100 grid. We
also compute the percentage of locations that are assigned a
class other than the three in the ground truth. This gives an in-
dication of how stable the interpolation is with respect to the
classifier. We call this value the noise percentage. We com-
pute the average mloU and noise percentage over 20 trials.

The graph Laplacian for the spatial morphing kernels is
computed using the known locations of the region boundaries.

3.2. Real Dataset: San Francisco

We create a land use map of San Francisco using ground level
images from Flickr. We download land parcel footprints from
the City of San Francisco website. These footprints are used
to construct the graph Laplacians for the spatial morphing ker-
nels.

4. RESULTS AND DISCUSSION

Figure [3| shows the results for the synthetic data. The top
row corresponds to one image per region and the bottom row
corresponds to two images per region. IDW interpolation is
seen to have difficulty especially when the images are very
sparse. For example, it actually introduces a completely new
class (10) in the one image case. Gaussian kernel regression is
see to perform much better. This demonstrates the importance
of the interpolation method in our framework.
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Fig. 3. Selected results on the synthetic data. The left is the ground truth map we are trying to estimate. The top row on the
right are the results for one image per ground truth region. The bottom row is for two images.
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Fig. 4. Selected results on the real world data from San Francisco.

The spatial morphing kernels produce maps with more ac-
curate boundaries and fewer spurious classes. As shown in the
bottom row of figure[3] for the two image case, Gaussian ker-
nel regression introduces two spurious classes while SMSK
do not introduce any. This shows the SMSK interpolation is
more stable with respect to the classifier.

Table[T]shows the qualitative results for the synthetic data.
SMSK and SMMK outperform the interpolation methods that
do not incorporate prior spatial knowledge. SMSK does bet-
ter than SMMK for very sparse image configurations while
the opposite is true for more dense configurations. We will
investigate this further in future work.

Figure [4] shows the results for the real data of San Fran-
cisco. On the left is shown the land parcels with the labels
that have been assigned to the Flickr images by our classifier.
(This is not the ground truth—in general, we do not know the
ground truth for the real data.) On the right are the maps
produced using the different interpolation methods. Here,
SMMK clearly produces the best results. Its map has much
more accurate boundaries than the other approaches. It is also
less affected by images that fall outside the parcels.

See the supplementary materials for more details on the

synthetic and real data.

5. CONCLUSION

We investigated the problem of spatially interpolating high-
dimensional features extracted from sparse ground-level im-
ages for dense mapping. We compared different interpolation
methods including ones which incorporate prior knowledge
of spatial heterogeneity. We evaluated the methods on syn-
thetic as well as real data. We observed that the choice of
interpolation method is important. We also showed that the
methods that incorporate spatial knowledge result in more ac-
curate regions.

In future work, we plan to have tighter integration be-
tween the CNN and the interpolation. One possible way to
do this is train the CNN to be more robust with respect to in-
terpolation between classes that frequently occur next to each
other geographically.
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