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ABSTRACT
Automated brain tissue segmentation into white matter

(WM), gray matter (GM), and cerebro-spinal fluid (CSF)
from magnetic resonance images (MRI) is helpful in the di-
agnosis of neuro-disorders such as epilepsy, Alzheimer’s,
multiple sclerosis, etc. However, thin GM structures at the
periphery of cortex and smooth transitions on tissue bound-
aries such as between GM and WM, or WM and CSF pose
difficulty in building a reliable segmentation tool. This paper
proposes a Fully Convolutional Neural Network (FCN) tool,
that is a hybrid of two widely used deep learning segmen-
tation architectures SegNet and U-Net, for improved brain
tissue segmentation. We propose a skip connection inspired
from U-Net, in the SegNet architetcure, to incorporate fine
multiscale information for better tissue boundary identifi-
cation. We show that the proposed U-SegNet architecture,
improves segmentation performance, as measured by aver-
age dice ratio, to 89.74% on the widely used IBSR dataset
consisting of T-1 weighted MRI volumes of 18 subjects.

1. INTRODUCTION

Segmentation of brain magnetic resonance imaging (MRI)
volume into its basic cytoarchitectural tissue classes is use-
ful for clinicians in the treatment of neurological disorders
such as epilepsy, schizohprenia, Alzheimer’s, and dementia.
Neurologists observe tissue abnormalities of cortical thick-
ening, shrinkage and ventricle expansion for diagnosis and
hence, accurate segmentation is crucial for correct diagnosis.
Manual segmentation by experts is time consuming, prone to
human errors, and impractical for large studies. Hence, devel-
opment of accurate methods for automated brain tissue seg-
mentation is an active research area.

Automated brain tissue segmentation has primarily three
challenges. Firstly, there are large variations in brain’s
anatomical structures by phenotype such as age, gender,
race, and disease. This leads to difficulty in generalizing one
specific segmentation method for all phenotypic categories.
Secondly, challenges are associated with the cytoarchitec-
tural variations such as gyral folds, sulci depths, thin tissue
structures, and smooth boundaries between different tissues.
This leads to confusion in categorical labeling into distinct
tissue classes and is challenging even for a human expert.

Lastly, the imaging technology has its own limitations with
reference to bias effects of scanner and, signal-to-noise ratio
and motion artifacts in the captured MRI images.

Intensity based thresholding [1], statistical methods [2, 3,
4], mean-shift [5], adaptive mean-shift [6, 7] and fuzzy c-
means clustering [6] are some of the commonly used brain
tissue segmentation methods. Of these, intensity threshold-
ing methods perform poorly in low contrast images and at the
overlapping boundaries of GM and WM. Statistical methods
learn the distribution of the training data and train the param-
eters accordingly. These may give poor results in the pres-
ence of multiplicative bias field [6, 7]. Mean shift methods
estimate mode of the feature vector distribution. However,
inappropriate settings of kernel parameters may lead to un-
der or over-segmentation [6]. The problem can be solved by
adaptive mean shift methods [6, 7]. Mahmood et al. [6] used
Adaptive Mean Shift (AMS) and fuzzy c-means and achieved
state-of-the-art performance on the IBSR-18 dataset [8].

Currently, with the success of deep learning (DL) meth-
ods in different application areas, these techniques are be-
ing applied to brain segmentation task as well. Here, re-
searchers have explored both 2D and 3D local neighborhood
based methods for the brain tissue segmentation task [9, 10].
VoxResNet, Parallel Multi-dimensional Long Short-Term
Memory (LSTM), multidimensional gated recurrent unit
(GRU) are different variants of deep neural networks that
have reported state-of-the-art performance on MICCAI MR-
BrainS challenge dataset [11, 12, 13]. VoxResNet is so far the
deepest 3D convolutional network containing 25 volumetric
convolutional layers and 4 deconvolutional layers. It incor-
porates 3D information, but given the scarcity of dataset in
medical imaging, training a huge network from scratch is a
challenging task.

The state-of-the-art brain segmentation DL architectures
employ 3D models that are computationally heavy and re-
quire learning a large number of parameters. This requires
a large number of annotated training sample images, while
medical imaging data, in general, is limited. This work is
motivated towards developing a computationally efficient DL
technique that works on limited training data and performs
brain image segmentation task with reasonably good perfor-
mance. In this context, we explore SegNet and U-Net ar-
chitectures which are stated to require much lesser training
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Fig. 1. We propose a Fully Convolutional Neural Network (FCN), that is a hybrid of two widely used deep learning segmentation
architectures SegNet and U-Net, for improved brain tissue segmentation. While the base architecture resembles SegNet, we
propose a skip connection inspired from U-Net. These skip connection help the proposed network in capturing fine-grained
multiscale information for better tissue boundary identification.

data [14, 15]. SegNet is a well known architecture in com-
puter vision for semantic segmentation [14], but has not been
used much so far for the brain MRI segmentation task. It
passes pooling indices to the upsampling layers and hence,
requires much fewer parameters and is faster to train. U-Net
uses multiscale information via skip connections and captures
both coarse level and fine level information at the deconvolu-
tional layers [15]. However, because of learnable upsampling,
U-Net has much larger parameters to learn and is compara-
tively slower to train than SegNet. On the other hand, SegNet
does not capture multiscale information as effectively as the
U-Net. We see the complimentary strengths in the two models
and explore a combination of the two in this paper.

1.1. Contributions

In this paper, we propose a hybrid architecture of SegNet and
U-Net, namely U-SegNet, that captures best of both the mod-
els by using SegNet architecture as the base, but with skip
connection at selected deconvolutional layer providing mul-
tiscale information for better performance. The model has
faster convergence because pooling indices are passed to the
deconvolutional layers.

An MRI volume is a 3D data and one can possibly use
each volume as a separate sample input. However, these leads
to severe reduction in the number of training samples. At the
other extreme, researchers have also explored using each slice
of the volume as a separate sample. However, this does not
exploit the 3D structure in the task. We make a compromise
between the two and propose to use 3 slices of the volume as
input to segment the middle slice.

We further observe that giving a full slice (or 3 slices) is
detrimental to the performance of the neural network. The
large size of the slice increase the number of parameters and
makes it harder for the network to effectively learn the param-
eters. Further, using larger neighborhoods does not necessar-
ily add to the information required for the accurate segmen-
tation. We, thus, propose a segmentation architecture which
works on a smaller patch of 40× 40× 3 which benefits us in
two ways. Firstly, as described above, it reduces the param-
eters and allows the network to focus on the useful informa-
tion. Secondly, it allows us to run the model over an image in
a sliding window style. This gives multiple output label for
each pixel, which we combine by averaging to generate the
final label. This is similar to model averaging, shown to be
effective my multiple other researchers in their problems, and
helps us also in the segmentation task.

2. PROPOSED U-SEGNET ARCHITECTURE

The U-Net architecture is U-shaped model with features of an
image learned at different levels through a set of convolutional
and max pool layers [15]. The feature maps are up-sampled
through deconvolutional layers to obtain the segmentation
maps at the original image resolution. Also, feature maps of
same resolution from down-sampling and up-sampling layers
are concatenated in the up-sampling path to incorporate both
coarser and finer information.

The SegNet architecture consists of a VGG encoder for
the down-sampling path and an inverse VGG for the up-
sampling path [14]. Unlike U-Net, SegNet does not use
deconvolution layers for up-sampling. Instead, feature maps



are up-sampled through the pooling indices taken from the
down-sampling path at the same resolution. Both SegNet and
U-Net architectures use complete images as inputs.

Our proposed U-SegNet architecture is a hybrid of both
SegNet and U-Net as shown in Figure 1. We posit that the
local information is more important than the global informa-
tion for identifying WM, GM, and CSF. Hence, a patch-based
training is adopted on axial slices of size 256 × 128. We ob-
served GM structures carefully and noted that for the given
resolution IBSR dataset, a patch size of 40 is appropriate to
capture sufficient-sized local structures helpful in segmenta-
tion. With each patch, equal sized patches from the slice
above it and below it are concatenated to add 3D volumet-
ric structural context to the segmentation task. Overlapping
patches shifted by 10 voxels in both directions on the axial
slices are captured for training and testing.

We have reduced the depth of the SegNet architecture to
handle 40 × 40 × 3 sized input patches. Each convolutional
layer uses a 3x3 kernel. Max-pool layers of size 2 × 2 and
RELU activation functions are used in the architecture. A
U-Net type skip connection is introduced only at the upper-
most layer as shown in Fig 1 to incorporate feature maps with
fine details. At this layer, a 1x1 convolution layer is used
to consolidate coarser and finer information for the segmen-
tation task and also to reduce the number of parameters for
the final convolutional layer. The skip connection helps us in
incorporating fine information without increasing the param-
eters as has been done in U-Net. In the end, a softmax layer
with 4 outputs is used to implement 4-label classification as
background (0), GM (1), WM (2), and CSF (3).

3. EXPERIMENTS AND RESULTS

3.1. Dataset Description

We have used IBSR-18 dataset comprising of 18 T1-weighted
MRI volumes of size 256×128×256 of 4 healthy females and
14 healthy males with age between 7 − 71 years [8]. These
volumes are provided after skull-stripping, normalization and
bias field correction. The ground truth is provided with man-
ual segmentation by experts with tissue labels as 0, 1, 2, 3 for
background, CSF, GM, and WM, respectively. Each MRI
volume is read, via 256 number of axial brain slices of size
256× 128 each, in the proposed model.

3.2. Implementation Details

Vanilla SegNet was used with weights initialized from a net-
work trained on the CamVid [16, 17] dataset. Training was
done sequentially by fine tuning one layer at a time starting
from the last layer with low learning rate of 10−6. Thus, this
new architecture is fine-tuned on the SegNet model for the
front-end SegNet layers. The new convolutional layer in the
end receiving information via skip connection and layers af-
terwards are trained from scratch. Stochastic gradient descent

(SGD) optimization, batch size of 64, momentum of 0.9, l2
regularisation with parameter 10−4 were used for a maximum
epoch of 700 during the training. Theano with Lasagne was
used to train all the models. While the SegNet architecture
has 3475396 learnable parameters, U-Net has 3900996, and
the proposed U-SegNet has 3483652 parameters. Thus, there
is not a substantial increase in the number of parameters com-
pared to the SegNet architecture.

3.3. Training and Test Data

We have selected 9 volumes for training and 9 for testing.
The train-test split comprises all the variation across age and
gender. At training time, we selected 6 volumes for training
and 3 for validation and reported the dice ratio on the test data.
For testing, the class of a pixel was decided through majority
voting of class labels obtained on overlapping patches. Dice
score (DC) was used as an evaluation metric for all the three
tissue classes.

DC =
2 ∗ TP

2 ∗ TP + FP + FN
,

where TP, FP, and FN represent the true positives, false pos-
itives, and false negatives of the class for which the score is
calculated.

3.4. Results and discussion

To validate the efficacy of our proposed U-SegNet, we imple-
mented both U-Net and SegNet architectures to benchmark
their performance on the IBSR dataset. The quantitative re-
sults for each class via average dice score on all 9 test MRI
volumes are reported in Table 1. Since mean percentage vol-
ume of GM, WM, and CSF over the test data are 65.84%,
32.80%, and 1.35%, respectively, weighted dice score (Wt.
DC) has also been reported in Table-1.

Models GM WM CSF Wt. DC

Fuzzy c-means [6] 83.11 91.83 21.7 85.13

SegNet [14] 87.36 84.15 59.04 85.92

U-Net [15] 86.87 83.58 58.36 85.40

Proposed U-SegNet 90.33 89.23 66.58 89.64

Proposed U-SegNet-2
with two skip connections 88.17 85.95 57.81 87.03

Table 1. Dice ratio comparison of our method with state-of-
the-art approaches.

By visualizing the results, we observed that U-Net and
SegNet make complimentary errors (Figure 2). SegNet tends
to miss out the finer details especially at the boundary be-
tween white matter and gray matter. U-Net on the other hand,



(a) (b) (c) (d) (e) (f)

Fig. 2. Visualization of (a) Input, (b) Ground Truth labeled image; Black: background, Green: GM, Blue: WM, Red: CSF
(c) SegNet, (d) U-Net, (e) Proposed U-SegNet architecture with one skip connection, and (f) Proposed U-SegNet architecture
with two skip connections (U-SegNet-2). It is observed that SegNet and U-Net show random patches (white rectangles) and
compromise fine details (red rectangles) around the folds generated by gyri and sulci. The proposed architecture captures fine
details and solve the random noise problem in the continuous WM seen in U-Net and SegNet. We further observe that adding
one more skip connection at the second level in (f) leads to loss of fine information and also fails to handle random noise present
in the continuous WM. SegNet, U-Net, and the proposed U-SegNet architecture with two skip connections show that adding
skip connections at lower layers leads to performance drop.

because of the skip connections from the lower levels, is able
to capture the fine details, say, at the boundaries more ac-
curately than SegNet. However, as shown in Fig 2(d), U-Net
gives errors at places where one class is present in abundance.
Also, we observe random noise in the U-Net based segmenta-
tion, which we speculate to be because of the confusion cre-
ated by the deconvolutional layers and skip connections at the
lower levels. This can also be possibly attributed to the lack
of patch-based training as proposed in our method.

Interestingly, U-SegNet incorporates the good features of
both U-Net as well as SegNet. It is observed from Table 1 that
the architecture has the best dice score on GM and CSF and
has the second best score (89.23 compared to the best score
of 91.83) score on WM. In [6], apriori spatial tissue probabil-
ity map generated from brain atlas has been used. This might
have resulted in improved segmentation performance over the
WM. The proposed method in this work does not utilize any
such apriori information. Although WM segmentation per-
formance is slightly inferior (by 1.5%) compared to [6], the
overall weighted dice ratio has improved by 4.5%.

We believe that the 1 × 1 convolutional layer with single
skip connection at higher layer consolidates coarser and finer
information for the segmentation task. The better capturing of
coarser information helps it in reducing random noise in the
low frequency or smoother one class region areas observed
with U-Net. The better capture of finer information via higher
level skip connection (where best finer information is present
compared to lower layers) helps with better boundary identi-
fication that is the limitation of SegNet.

To further validate the importance of only one skip con-
nection added at the higher layer, we experimented by adding
one more skip connection at the second level, called as U-
SegNet-2. These results have been reported in the last row
of Table 1. It is observed that the model starts generating er-

rors of U-Net which could be because of the larger number of
parameters added due to multiple skip connections. As a re-
sult, the weighted average dice score drops by 2% compared
to the U-SegNet (89.64% of U-SegNet vis-à-vis 87.03% of
U-SegNet-2), although it is still higher from U-Net by 2%
(85.4% of U-Net).

4. CONCLUSION

Automated brain tissue segmentation is important for disease
diagnosis of neurological disorders. In this paper, we have
proposed U-SegNet deep learning architecture that is a hy-
brid of existing SegNet and U-Net architectures. We show
that the U-SegNet outperforms state of the art SegNet and U-
Net models on the task. Compared to U-Net, U-SegNet has
a lesser number of parameters allowing our network to train
better. This helps to resolve random noise generated in the
U-Net in the proposed architecture. While SegNet tends to
miss out on finer details, the proposed model is able to cap-
ture these finer details by incorporating the single skip con-
nection in the U-SegNet architecture. We believe that the
selective skip connection with 1x1 convolution layer in the
upsampling path consolidates both the finer information and
the coarser information, improving the segmentation perfor-
mance. The present work may also find its relevance in other
medical imaging applications using deep learning.
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