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ABSTRACT

One of the most important factors in training object recogni-
tion networks using convolutional neural networks (CNNs) is
the provision of annotated data accompanying human judg-
ment. Particularly, in object detection or semantic segmen-
tation, the annotation process requires considerable human
effort. In this paper, we propose a semi-supervised learn-
ing (SSL)-based training methodology for object detection,
which makes use of automatic labeling of un-annotated data
by applying a network previously trained from an annotated
dataset. Because an inferred label by the trained network is
dependent on the learned parameters, it is often meaningless
for re-training the network. To transfer a valuable inferred la-
bel to the unlabeled data, we propose a re-alignment method
based on co-occurrence matrix analysis that takes into ac-
count one-hot-vector encoding of the estimated label and the
correlation between the objects in the image. We used an
MS-COCO detection dataset to verify the performance of
the proposed SSL method and deformable neural networks
(D-ConvNets) [1] as an object detector for basic training.
The performance of the existing state-of-the-art detectors (D-
ConvNets, YOLO v2 [2], and single shot multi-box detector
(SSD) [3]) can be improved by the proposed SSL method
without using the additional model parameter or modifying
the network architecture.

Index Terms— Object detection, Semi-supervised learn-
ing, Convolutional neural network, Co-occurrence matrix

1. INTRODUCTION

Recently, the effectiveness of convolutional neural networks
(CNNs) in the object detection has been improved, and the
performance of the object detectors that has stagnated since
the appearance of the Histogram of Oriented Gradient (HOG)
based the detector [4] has been greatly advanced. There are
two main types of end-to-end training object detectors that
utilize CNNs as a backbone architecture [5, 6, 7]. There are
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Fig. 1: Overview of the proposed SSL pipeline. The pro-
posed technique consists of two steps. In the first step, the
detector for labeling the unlabeled data is trained with the ex-
isting annotated data (Training1), and then the inferring pro-
cess for the unlabeled data is performed (Testing1). After
performing pseudo-labeling through one-hot-vector encoding
and co-occurrence matrix analysis, a new network is trained
(Training2) and the data for evaluation are inferred (Testing2).

two-stage networks of region-based detectors with a Network
in Network (NIN) structure by training the region candidates
from the region proposal network [1, 8, 9], and one-stage net-
works that learn the region of the objects from sub-regions
in predefined areas [2, 3, 10]. Both types of networks have
played a significant role in improving the dramatic perfor-
mance of CNN and the decoder network for multi-tasking.

Despite the dramatic improvement in performance of
state-of-the-art detectors, object detectors trained by machine
learning techniques have the disadvantage of having a large
capacity for the refined datasets for training. Currently, the
annotation method widely used for the production of learn-
ing data provides a simple user interface that can specify
the class of the object to be classified and the position of the
bounding box, and it can be used in a crowdsourcing platform
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[11, 12]. Notwithstanding the evolution of these platforms
and methodologies, annotation techniques that rely on human
labor are still a burden on learning algorithms. Particularly,
annotation cost is a big obstacle to learn a good network for
object detection and semantic segmentation [12, 13].

Various efforts have been made to overcome these prob-
lems in object classification and detection. Lee [14] proposed
a simple pseudo-labeling technique to utilize the learned
network for semi-supervised learning (SSL). Although the
idea of pseudo-labeling of trained networks has long been
proposed, re-training with pseudo-labeling depends on the
parameters of the learned network, making it difficult to
obtain improved results in re-training. In order to solve
this problem, Lee proposed a weight control-based learning
method for the pseudo labeled data in cross-entropy loss
and confirmed the possibility of SSL technique using the
learned network. Yan et al. [15] proposed an object detec-
tor using EM (Expectation-Maximization (EM)) to apply the
SSL-based training method to the object detection. They pro-
posed an algorithm that updates the CNN internal parameters
from the probabilities of the inferred data for non-label data
whereas the object detector learns through the EM algorithm.

In this paper, we propose a simple but powerful one-hot-
vector encoding based on the SSL idea and a semi-supervised
training method through co-occurrence matrix analysis. The
latest performance networks deduce a bounding box of the
correct form that can be used as training data in a specific
object or visual environment. However, if we use the result
of inference as a pseudo label in direct way, we cannot ob-
tain the big learning effect by dependency of parameter and
data. In order to compensate for the effect of pseudo-labeling
during training, 1) the inference result is encoded as a one-
hot-vector and 2) the co-occurrence matrix obtained from the
prior knowledge is used to recalculate whether the inference
result is suitable for training. Through these two steps, it is
decided whether the inferred bounding box is included in the
training dataset and the new network is learned through the
updated dataset. Figure 1 outlines the proposed SSL learning
scheme. As a result of testing the SSL scheme with the MS-
COCO detection dataset, we confirmed the performance im-
provement in the state-of-the-art detectors such as deformable
neural networks (D-ConvNets) [1], YOLO v2 [2], and single
shot multi-box detector (SSD) [3] in terms of accuracy using
mean average precision (mAP) without any additional param-
eter or architecture modification.

2. SEMI-SUPERVISED LEARNING WITH
DEFORMABLE NEURAL NETWORKS

2.1. Deformable convolutional networks

To apply our SSL method, we utilize the D-ConvNets ob-
ject detector [1], which uses the CNN combining with de-
formable operation and achieves state-of-the-art performance

with the MS-COCO detection evaluation dataset [12]. For
kernel weight of a general CNN, learnable convolutional pa-
rameters are only learned for neighboring pixels or its atrous
spatial position [16] at every pixel location. In this case, there
is a limitation that the kernel weight at one pixel location
is only considered to be neighboring with local neighbors.
D-ConvNets does not limit the pixel location of the kernel
weights to be learned by adding the deformable offset param-
eter to the learnable pixel location.

The learning objectives of D-ConvNets are defined as fol-
lows:

y(p0) =
∑
pn∈R

w(pn) · x(p0 + pn +4pn); (1)

where w is the kernel weight in the network, x is the input
of the network at a particular layer, R is a regualr grid over
the input, and p0 is the 2D coordinate position of the ker-
nel weights to be learned. 4pn is a newly introduced learn-
able offset parameter through which a deformable element of
a convolution-capable region is introduced to help learn var-
ious types of kernels that appear in the detection of objects
and objects with severe deformation. In order to improve the
performance of object detection, deformable operation is ap-
plied to a few top layers of the backbone CNN of the region-
based fully convolutional networks (R-FCN) [8] and the po-
sition sensitive ROI pooling layer for localization.

2.2. Pseudo labeling with one-hot-vector encoding

We use a one-hot-vector based pseudo-labeling technique to
train D-ConvNets, which is learned as the baseline algorithm
for the proposed SSL using unlabeled images. In order to per-
form pseudo-labeling, the inferred bounding boxes with the
softmax output higher than the threshold value of the inferred
bounding box of D-ConvNets are encoded as one-hot vector
to provide learnable pseudo-label that will be used for later
training.

LB(i) =

{
[x̂, ŷ, ŵ, ĥ, c] if exp qj∑n

j=1 exp(qj)
> ρ

[ ] otherwise,
(2)

LB(·) is the index dictionary for the training label and has in-
put the vector in the form [x, y, w, h, c], and i is an ith new la-
beled object in an inferred image to add previously annotated
dataset. In this case, x, y, w, h represent the position and size
of the bounding box and c is a class label corresponding to
the softmax output. qj is the inferred responses of last layer
in D-ConvNets and n is the total number of desired classes
to detect with given dataset. If it exceeds the given threshold
value ρ, the pseudo-label obtained through the assigned label
is used for learning together with the previously annotated
data in the future.



2.3. Co-occurrence matrix analysis

In order to maximize the efficiency of our SSL, we propose
the use of a co-occurrence matrix that is extracted by prior
knowledge of annotated data. Co-occurrence matrix is a ma-
trix of the probability that objects in the image appear on the
same image. Because inferring the probability of existence of
a specific object with only the learned object detector is biased
with regard to the training result, it is effective to represent the
relation with co-occurred objects to readjust the probability of
inference and use it for pseudo-labeling.

To represent the relationship between objects in a form
that can be calculated when constructing the co-occurrence
matrix, conditional independence between objects is as-
sumed. Then, to normalize the strong relationship between
the objects in the image, max-normalization was performed.
Finally, in order to efficiently apply the information on the
prior knowledge after the maximum normalization, only the
relation between the two strongest objects is applied to the
final softmax output correction when several objects exist in
the image at the same time.

p(x|z1, z2, · · · , zn) =
n∏

i=1

p(x|z1, · · · , zn)

≈ max p(x|zi),∀i = 1, 2, · · · , n,
(3)

where n is the total number of classes to detect. For exam-
ple, if there are four classes (see Figure 2) of desired objects
to detect in an image, we can apply a rule in Equation 3 to
extract co-occurrence probability of the class apple as follow-
ing: p(apple|dog, horse, bike) ≈ p(apple|horse). To reflect
the extracted correction probabilities, we need to re-scale the
inferred softmax probability for pseudo-labeling with the co-
occurrence matrix values. In this case, the labeling to unla-
beled data to which the co-occurrence threshold is applied in
Equation 2 is defined as follows.

LB(i) =

{
[x̂, ŷ, ŵ, ĥ, c] if exp qj∑n

j=1 exp(qj)
· σ > ρco

[ ] otherwise,
(4)

where σ = max p(x|zi) is the probability for desired class
object from co-occurrence matrix and ρco is the threshold for
pseudo-labeling the same as Equation 2 which applies one-
hot-vector encoding with an inferred output.

3. EXPERIMENTAL RESULTS

We used the MS-COCO detection dataset [12] to verify the
effectiveness of the proposed SSL method. The MS-COCO
dataset provides training and testing data and evaluation
tools for visual recognition applications such as object de-
tection and instance segmentation, key-point detection, scene
parsing, and unlabeled2017 data for unsupervised or semi-
supervised learning.
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Fig. 2: Example of co-occurrence matrix. A co-occurrence
matrix of four classes with five images (top) and a case with
prior knowledge from a large-scale dataset (bottom) using the
conditional marginalization and the max-normalization.

In order to verify the proposed SSL method, we used a
single model of D-ConvNets as a baseline detection architec-
ture for initial pseudo-labeling. Among the recently proposed
CNN architectures [5, 6, 7], pre-trained ResNet-101 [5] with
ImageNet was used as the backbone CNN for the baseline
architecture training. In the baseline model training, input
data size are 1200 × 800, and the total training epoch sets
are 10 and the learning rate starts from 5 × 10−3. We apply
10−1 times dropping scale in 5.3 epoch. To apply the pro-
posed learning metric, we need to set the threshold parameter
ρ for initial pseudo-labeling and another threshold parameter
ρco for the co-occurrence matrix analysis. The ρ for one-hot-
vector encoding in Training1 was set to 0.5 and 0.7, and the ρ
required for Training2 was set to 0.5, and for ρco, 0.1, 0.2, 0.3,
and 0.4 were set (see Figure 1). Figure 3 shows the inference
results of pseudo-labeling for the proposed SSL from a single
model of trained D-ConvNets. When the co-occurrence ma-
trix was readjusted, the accuracy of pseudo-labeling could be
corrected according to the set threshold value. When the set
threshold value is high, only the conservative reasoning result
is included in the training dataset.

Table 1 shows quantitative results obtained by applying
a number of learned model to the test-dev17 data according
to the set threshold value. For evaluation of the MS-COCO
detection dataset, the mean absolute precision (mAP) is ob-
tained by increasing the intersection on union (IoU) of the
inferred bounding box versus the ground truth bounding box
by 0.05 from 0.5 to 0.95 ([0.5 : 0.05 : 0.95]). According
to Table 1, the highest mAP was recorded at ρ = 0.5 and
ρco = 0.3.

Table 2 shows the results of applying the proposed SSL
method to different detectors [1, 2, 3] with the SSL parame-
ters obtained from Table 1. In order to train SSD, the back-
bone CNN used ResNet-101 with ImageNet, which is already
trained, and the training detail is as follows. SGD was used
for training optimization, and the learning rate was started at
10−3,and dropping scale 10−1 was applied at 80 k, 100 k, and
120 k. The total learning epoch is 32, and the scale minimum



Table 1: MS-COCO detection dataset evaluations for
[0.5:0.05:0.95] using D-ConvNets with different parameters.

Model (backbone, SSL parameter(s),
training dataset) mAP

D-ConvNets (ResNet-101, none,
train17 + val17) 36.3

D-ConvNets (ResNet-101, ρ = 0.5,
train17 + val17 + unlabeled17) 37.0

D-ConvNets (ResNet-101, ρ = 0.7,
train17 + val17 + unlabeled17) 36.7

D-ConvNets (ResNet-101, ρ = 0.5, ρco = 0.1,
train17 + val17 + unlabeled17) 37.6

D-ConvNets (ResNet-101, ρ = 0.5, ρco = 0.2,
train17 + val17 + unlabeled17) 37.3

D-ConvNets (ResNet-101, ρ = 0.5, ρco = 0.3,
train17 + val17 + unlabeled17) 37.8

D-ConvNets (ResNet-101, ρ = 0.5, ρco = 0.4,
train17 + val17 + unlabeled17) 37.5

Table 2: MS-COCO detection dataset evaluations for
[0.5:0.05:0.95] using different architectures with or without
the proposed SSL (ρ = 0.5, ρco = 0.3).

Model (backbone CNN) mAP mAP with SSL
SSD [3] (ResNet-101) 24.1 25.3

YOLO v2 [2] (Darknet-19) 24.0 25.1
D-ConvNets [1] (ResNet-101) 36.3 37.8

ratio for the default box is set to 10. The input size of the im-
age was re-scaled to 512×512, the momentum was set to 0.9,
and the weight decay was set to 5×10−4. The backbone CNN
for training YOLO v2 utilizes the previously trained Darknet-
19 with ImageNet, and the training details are as follows. For
the optimization, SGD is used same as SSD, and the learning
rate starts from 10−3 and the dropping scale 10−1 is applied
at 266 and 300 epoch. The total learning epoch is 500, and the
training metric like [2] is applied for high-resolution images
with 608×608. As a result, using the proposed SSL tech-
nique, we can confirm that the performance of the YOLO v2
and SSD is improved over 1.0 mAP in [0.5: 0.05: 0.95] in our
evaluations.

4. CONCLUSION

In this paper, we proposed a method to improve object de-
tection using SSL. The proposed SSL scheme has the advan-
tage of automatically acquiring trainable labeled data without
any additional human effort to insert a new annotation. We
also proposed a metric to improve the performance of exist-
ing one-hot-vector-based SSL using a co-occurrence matrix.
When training is performed applying the proposed SSL tech-
nique, the learning time is increased in accordance with the
increased amount of data, but the improved performance can
be expected without modification of the architecture or addi-

Fig. 3: Examples of pseudo-labeling results. From the
left, the results of the basic model (ρ = 0.5), applying co-
occurrence matrix with (ρ = 0.5, ρco = 0.1), and (ρ = 0.5,
ρco = 0.3). There is a large difference in the result of pseudo-
labeling according to the set threshold value. For the first
row, we could remove the bounding box for the mis-inferred
object, and for the second and third rows, we detected addi-
tional objects in the complex scene. The fourth row detected
a small tie object, which is difficult to deduce in a complex
scene, based on the relation between objects. The final row
detected additional bounding boxes of undetected objects.

tional parameters.
In order to further clarify the performance of our SSL

scheme, it is necessary to verify various models according
to the setting of the hyper-parameter of the single model, and
the influence of the SSL scheme on the network type such as
one stage or two stages and the difference between them. In
addition, there is a need to analyze what effect the baseline
detector has on performance.
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