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Department of Signal Theory and Communications, Universidad Carlos III, Leganés (Madrid), Spain

ABSTRACT

Content-based image representation is a very challenging task if we
restrict to their visual content. However, associated metadata (such
as tags or geolocation) become a valuable source of complemen-
tary information that may help to enhance the current system per-
formance. In this paper, we propose an automatic training frame-
work that uses both image visual contents and metadata to fine tune
deep Convolutional Neural Networks (CNNs), providing better im-
age descriptors adapted to certain locations, such as cities or regions.
Specifically, we propose to estimate some weak labels by combin-
ing visual- and location-related information and incorporate them
to a novel loss-function over pairs of images. Our experiments on
a landmark discovery task show that this novel training procedure
enhances the performance up to a 55% over well-established CNN-
based models and is free from overfitting.

Index Terms— CNN, metadata, loss function, weak labels

1. INTRODUCTION

In 2017, Facebook’s users generated a total of 300 million photos
per day1. The amount of new multimedia content has grown expo-
nentially for the past decade, and it is now so staggering that storing,
managing, indexing and organizing user-generated files efficiently is
one of the main technological challenges for the industry. During
the last few years, the scientific community has tackled this problem
by means of novel computer vision techniques aiming to automati-
cally obtain content-based image descriptors which are distinctive,
compact, and allow an efficient search [1][2][3].

Convolutional Neural Networks (CNNs) [4] have shown their
superior performance in a variety of tasks and also in this particular
field. Modern deep classification models, such as residual networks
[5], have achieved human-like performance on the ImageNet chal-
lenge [6], where a thousand object categories are recognized in a set
of a few million images. These networks are able to learn the com-
mon visual patterns of the objects belonging to the same category,
i.e., objects of the same category are described by similar feature
vectors regardless of the intra-class variability. More recently, some
research works such as [7] have developed Recurrent Neural Net-
works (RNN) that combine object recognition and language models
to generate natural language-based descriptions of the image con-
tents in a human-like way. Describing the image content using nat-
ural language is particularly useful for presenting humans with cap-
tions or doing content-based searches from textual queries.

This work has been partially supported by the National Grants TEC2014-
53390-P and TEC2017-84395-P of the Spanish Ministry of Economy and
Competitiveness. We gratefully acknowledge the support of NVIDIA Cor-
poration with the donation of the TITAN X GPU used for this research.

1https://zephoria.com/top-15-valuable-facebook-statistics/

Fig. 1: The proposed system: first, all images available from a region
are gathered; then, we select the geolocated and use them to train a
location-adapted CNN; finally, we employ this model to describe the
whole set of images.

Nevertheless, in some scenarios, we are more interested in iden-
tifying instances of specific objects rather than general categories
(detecting a particular car make and model, instead of just cars).
For such a task, it is common to employ image matching techniques
which put more emphasis on highly discriminative capabilities. For
the particular problem of content-based image retrieval, the work in
[8] proposed a new CNN-based architecture called deep-retrieval,
which outperforms most of the classic image matching methods at a
fraction of their computational cost. Although it achieves impressive
results in several well-known datasets for retrieval, its performance
is still limited due to the fact that even images that do not repre-
sent the same object yet share certain visual patterns (e.g. various
churches of the same style may share certain architectonic elements,
several car models of the same make usually share many elements
and external finishes). Overcoming this issue is not straightforward
and would require some degree of supervision to help retrieval sys-
tems to infer which elements or details are actually discriminating.
However, annotating datasets is costly and might become impracti-
cal in many scenarios.

Alternatively, many public image and video repositories provide
metadata (date, GPS, tags, titles, etc.) associated with the contents
that may help to improve the automatic description of the images.
In [9], the authors proposed a system that finds out complementary
information about landmarks from Singapore by combining content-
based CNN descriptions with GPS coordinates. However, they pro-
pose a supervised approximation which requires labeling thousands
of images by hand, jeopardizing its practical application. Automatic
photo geotagging is also an active field [10][11][12], where coordi-
nates for a new image are estimated from those exhibiting the most
similar content in a reference geotagged repository. Similarly, user-
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Fig. 2: (left) Geo-location of six photos shown on a map of Jerez (Spain). (right) Corresponding photos.

provided tags or titles have been also used to retrieve representative
views of landmarks worldwide [13]. The success of these methods is
strongly related to the availability and quality of metadata associated
with contents. Nevertheless, only a fraction of the users sharing their
photos in public repositories actually provide these metadata. Taking
GPS coordinates as an illustrative example, a simple search in Flickr
with the tag London yields 16% of geo-located images. Similar val-
ues are achieved for Berlin, 18%, and Madrid, 15.1%. Furthermore,
GPS coordinates, user tags or even titles are often noisy, which dra-
matically limits their usability [14].

In this paper, we propose a novel training framework that relies
on both, image content and metadata in the form of geo-location, to
automatically learn location-adapted deep models that provide prop-
erly tuned image descriptions for those visual contents found in that
location. Avoiding any kind of supervision (beyond that inferred
from the available, noisy metadata), we learn our models from the
subset of images with GPS coordinates, and then apply them to the
whole set of visual contents. For this purpose, we propose a specif-
ically tailored cost function that makes use of weak labels estimated
from image descriptors and geo-location. We use this loss function
to fine tune a baseline model aiming to suitably represent images
from a particular city or region, thus boosting the system perfor-
mance in subsequent tasks such as landmark discovery or image re-
trieval.

The remainder of the paper is organized as follows: Section 2 de-
scribes our learning framework, including the custom loss function
and the process to combine image features and metadata. Section 3
describes our experiments and discuss the results. Finally, Section 4
draws our conclusions and outlines further work.

2. SYSTEM DESCRIPTION

Our system departs from an initial model that was originally trained
for a different task, such as classification or retrieval. We refer to this
model as baseline model and to our proposed location-adapted net-
works as location-CNNs. Figure 1 summarizes our proposal. First,
we gather from Flickr 2 all images from a particular location (city,
region, etc.) using geo-location and textual tags. Then, we use the
subset of geo-located images to train a location-adapted CNN using
a cost function that works with soft labels derived from image vi-
sual descriptors and GPS coordinates. Finally, the learned model is

2www.flickr.com

used to describe the whole set of photos from that particular place,
enabling subsequent user-end applications such as landmark discov-
ery, image retrieval and annotation.

2.1. Cost Function

The training of the location-CNNs is carried out using a cost func-
tion that aims to learn visual descriptors that bring together pairs of
images showing related views of the same landmark, while push-
ing away other pairs. Considering the example shown in Fig. 2,
we would like our network to provide similar visual descriptors for
the images in pairs (A,B) and (B,C), and push away the descriptors
of pairs (C,E) and (D,F). This kind of cost functions working with
pairs of images have been previously proposed in the context of pure
matching tasks [15][16]. Nevertheless, we have developed a novel
version of those functions that computes the loss for the i-th pair as
follows:

Li =
1
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yid

2
Vi

+
1

2
(1− yi)max

(
0,m− d2Vi

)
(1)

where d2Vi
is the square Euclidean distance between the visual fea-

tures of the i-th pair, computed with our location-CNN model; m ≥
0 is a margin that avoids that very dissimilar pairs keep contributing
to the loss; and yi ∈ [0, 1] is a soft label that signals whether the
generated visual descriptors (of a pair of images) need to get closer
(yi ≥ 0.5) or further away (yi < 0.5).

To ensure convexity, both the soft labels (yi) and the margin (m)
must be fixed during learning. To that end, we compute the margin
and the soft labels for every pair of images using the descriptors pro-
vided by the baseline model. The margin is set to the average dis-
tance of all the feature pairs, while the soft labels are estimated using
the baseline model features and the GPS coordinates as detailed on
the next section.

2.2. From Images and Metadata to Soft Labels

The soft label yi for any pair of images is estimated as a function
of their feature-based distance (computed with the baseline model)
and their spatial distance. Referring again to the previous exam-
ple in Fig. 2, images (A,B,C,D,E) are spatially close to each other;
however, this fact does not guarantee that their contents are visually
related. For instance, image E shows a completely different scene
than (A,B,C,D); therefore its descriptor should not be forced to be
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Fig. 3: Piece-wise function defined by equation 3 for dSi ≤ TS as
a function of d2Bi

. The left hand side of TB is almost flat giving
positive pairs large weights. The right hand side decreases slowly
to give near-the-threshold false negatives small weights in the cost
function.

similar to those of the rest. The opposite holds for images (D,F); al-
though they are visually similar, they were taken hundreds of meters
away from each other and, in fact, belong to different buildings.

Following these intuitions, we conclude that for a pair of images
to be assigned a yi ≥ 0.5 they have to be close in terms of both,
features and GPS coordinates. For that purpose, we need to set up
two thresholds, TB related to the distance of visual features com-
puted with the baseline network, and TS associated with the spatial
distance. In order to obtain a robust solution that is aware of the ac-
tual data statistics, we derive the threshold TB from the distribution
of square visual distances d2Bi

computed using the baseline model.
Specifically, assuming a Gaussian distribution:

TB = µB − kσB (2)

where µB is the average and σB the standard deviation. We have
found experimentally that a suitable range for k is from 2.0 to 2.5.
Concerning the spatial distance, a simple threshold of TS = 300
meters performs well in our training sets and generalizes properly
on unseen locations.

Once we have settled both thresholds, we use the following
piece-wise function to compute the soft label yi based on visual d2Bi

and spatial dSi distances:
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(3)

where it should be noted that given dSi ≤ TS , i.e., the images of
the i-th pair are close enough according to their geolocation, the
threshold TB on the visual distance decides between yi ≥ 0.5 and
yi < 0.5 as illustrated in figure 3.

Let us gain some insight into eq. (3) by discussing its main
advantages: (a) the soft labels yi allow us to put more or less em-
phasis on certain pairs of images, thus producing stronger gradients
for high-confidence pairs and weaker gradients for more doubtful
cases (e.g. equation 1 generates zero gradients for yi = 0.5); (b)
the piece-wise function allows to establish asymmetric behaviors at
both sides of the threshold TB . In particular, we have observed that,
by setting a conservative threshold, image pairs with distances below
TB almost always show the same visual scene, and the variations in
the distance are usually due to factors like different viewpoints or
varying illuminations. Hence, we have designed a flat curve on this

Table 1: Training and test sets statistics

Training sets Test sets

Images
Pos

pairs

Neg

pairs
Images Landmarks

Jerez 1000 1.5k 250k 1000 19

Madrid 4000 30k 4M 3900 15

Rome 4000 30k 4M 3100 14

piece of the equation to ensure a similar contribution for all of them.
However, if the threshold is conservative, we may yet find related
image pairs with distances above TB . In that case, in order to avoid
pushing them too away, a slowly decreasing slope seems to be more
appropriate (see Fig. 3).

3. EXPERIMENTS AND RESULTS

In this section, we describe the data sets, the experimental setup,
the evaluation metrics and the final results. Although the main goal
of our approach is to provide location-adapted visual features en-
abling subsequent higher-level tasks, in this paper, we have focused
our assessment on the specific task of automatic landmark discovery.
For that purpose, our computed visual descriptors are used to feed a
clustering algorithm which is in charge of discovering relevant clus-
ters associated with landmarks. In order to separate the analysis of
the proposed learning framework from the potential influence of the
parameters of the clustering algorithm, we have used a k-means al-
gorithm with a pre-defined number of clusters (the number of land-
marks we aim to discover). It should be noted that other clustering
approaches could also be used in a more realistic setup.

3.1. Datasets, experimental setup and evaluation metrics

Our dataset contains Flickr images from three different cities in Eu-
rope: Rome (Italy), Madrid and Jerez de la Frontera (Spain). For
each city, a train set of geo-located images has been gathered within
a 10km radius around the center of each city. Additionally, we have
used a list of generic keywords that helps to retrieve images relevant
to our task, namely: landmark, monument, building, park or art. Fi-
nally, we filter out the results allowing only one image per user in
order to avoid duplicates. The test set has been built by searching
for a predefined list of famous landmarks in each city, and manually
cleaning the retrieved results. In order to provide a fair analysis, an
image is never present in both sets. Table 1 summarizes the num-
ber of images and landmarks per city in the corresponding training
and test sets, as well as the resulting number of positive and negative
sample image pairs.

Using the corresponding training sets, we have trained three in-
dependent CNNs using ResNet50 as our baseline network: JerezNet,
MadridNet and RomeNet. All the networks were initialized with
the weights of ResNet50 trained on ImageNet and were trained
for 10 epochs with 1000 batches per epoch using Batch Gradient
Descend (BGD) with 40 pairs of images per batch. We have used
a sampling strategy to build the batches that ensures that at least
10% of the pairs are positive (yi ≥ 0.5) and the rest are negative
(yi < 0.5). Additionally, a particular image is only included once
per batch, allowing us to safely use BGD instead Stochastic Gradi-
ent Descend (SGD), as it is a common practice when working with



Table 2: Average and standard deviation of the Rand, Jaccard
and Fowlkes indexes as a result of comparing the proposed mod-
els: JerezNet, MadridNet and RomeNet; with the baseline model
ResNet50

Rand Jaccard Fowlkes

Je
re

z

ResNet50
0.9071

±0.0201
0.3203

±0.0145
0.4944

±0.0208

JerezNet
0.9242

±0.0201
0.3834

±0.0323
0.5627

±0.0254

M
ad

ri
d ResNet50

0.9254

±0.0051
0.3817

±0.0239
0.5467

±0.0322

MadridNet
0.9547

±0.0189
0.5911

±0.0261
0.7551

±0.0257

R
om

e ResNet50
0.9174

±0.0157
0.3728

±0.0298
0.5692

±0.0182

RomeNet
0.9345

±0.0177
0.5473

±0.0138
0.6625

±0.0125

pairwise loss functions. For the parameters update, we have em-
ployed 0.9 for the momentum term, 10−5 as learning rate and 10−3

as weight decay. The affine layers of the original model have been
removed and we have kept the output of the last average pooling as
our features. The models were trained using the open deep learning
library PyTorch3 on a NVIDIA TITAN XP GPU.

Once our networks have been trained, in order to assess our
models in the task of automatic landmark discovery, we have gen-
erated the visual descriptors of images in the test set, and used K-
means with the pre-defined number of landmarks to cluster these de-
scriptors. The results are then compared with the ground-truth using
three classical clustering evaluation metrics: the Rand [17], Jaccard
[18] and Fowlkes-Mallows [19] indexes. These indexes are based on
counting pairs of images whose members lie in the same or different
clusters when comparing the ground truth and the estimated labels,
and range from zero to one with one meaning a perfect clustering.
It is worth noting that, for the sake of stability and statistical signif-
icance, we have repeated the clustering process ten times to account
for differences due to K-means initialization.

3.2. Results

Table 2 shows the averages and standard deviations of the Rand,
Jaccard and Fowlkes-Mallows indexes obtained in our experiments,
using either visual descriptors generated by the baseline network
Resnet50 or by our proposed location-adapted CNNs (JerezNet,
MadridNet, RomeNet). Results show that for all the evaluation
indexes and test sets, the location-adapted CNNs provide a notable
improvement over the baseline. The large difference between the
Rand and the other two metrics is due to the nature of the measures.
The Rand index is highly biased towards true negatives, i.e., pairs of
images whose members were not in the same cluster neither in the
ground truth nor in the estimated labels, which are the vast majority
for any reasonable sized database. The other two indexes neglect
true negatives, providing more stable results over different dataset
sizes and number of clusters.

3http://pytorch.org/

Table 3: Average and standard deviation of the Rand, Jaccard and
Fowlkes indexes as a result of clustering images from Madrid and
Rome using JerezNet.

Rand Jaccard Fowlkes

M
ad

ri
d ResNet50

0.9254

±0.0051
0.3817

±0.0239
0.5467

±0.0322

JerezNet
0.9287

±0.0153
0.3867

±0.0238
0.5522

±0.0301

R
om

e ResNet50
0.9174

±0.0157
0.3728

±0.0298
0.5692

±0.0182

JerezNet
0.9105

±0.0054
0.3646

±0.0179
0.5525

±0.0223

3.3. Ablation Study

As an ablation study, we have also tested the ability of the learned
models to deal with unseen city landmarks or even other cities. In
other words, we would like to check if our models are overfitting
the previously seen data and would therefore perform badly on un-
seen scenes. This would become a significant weakness if we do not
have geo-located images of a particular landmark of interest in our
training set. Table 3 shows the results achieved by JerezNet when
tested in Madrid or Rome. It can be seen that, in this scenario, both
the baseline and JerezNet offer very similar performances. This is
a very important result since it proves that our model adapts to the
trained location, but does not over-fit on the training data. Conse-
quently, it is not necessary to see all the interesting places from a
city during training in order to deploy a useful model since, even for
those unseen landmarks, the model would perform at least as well as
a general CNN such as Resnet50.

4. DISCUSSION

In this paper, we have proposed a novel training framework that re-
lies on image content and metadata to learn location-adapted deep
models, that provide tuned image descriptors for specific visual con-
tents. Our networks, which depart from an initial model originally
learned for a different task, are trained by means of a custom pair-
wise loss function using weak labels based on available image meta-
data. Our experiments on a landmark discovery task show that the
proposed location-CNNs achieve an improvement of up to a 55%
over the baseline model (Jaccard index on Madrid test set). This im-
plies that the network has successfully learned the visual clues and
peculiarities of the region for which it was trained, and generated
image descriptors that are better location-adapted. In addition, for
those landmarks that were not present on the training set or even
other cities, our proposed models performed at least as well as the
baseline network used as initialization, which demonstrates the ab-
sence of overfitting. Further work will explore other metadata and
scenarios where specialized networks are necessary to outperform
existing models.
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