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ABSTRACT

In this paper, we propose a new variant of Linear Discrim-

inant Analysis to overcome underlying drawbacks of tradi-

tional LDA and other LDA variants targeting problems in-

volving imbalanced classes. Traditional LDA sets assump-

tions related to Gaussian class distribution and neglects influ-

ence of outlier classes, that might hurt in performance. We

exploit intuitions coming from a probabilistic interpretation

of visual saliency estimation in order to define saliency of a

class in multi-class setting. Such information is then used

to redefine the between-class and within-class scatters in a

more robust manner. Compared to traditional LDA and other

weight-based LDA variants, the proposed method has shown

certain improvements on facial image classification problems

in publicly available datasets.

Index Terms— Visual saliency estimation, Fisher’s dis-

criminant criterion

1. INTRODUCTION

Linear Discriminant Analysis (LDA), as a traditional sta-

tistical machine learning technique, has been employed for

several classification tasks, such as human action recognition

[1], [2] and person identification [3], due to its effectiveness in

reducing dimensions and extracting discriminative features.

In a classification task, LDA is used to define an optimal pro-

jection by means of Fisher criterion optimization. Despite the

widespread application of traditional LDA, its performance

is affected by several issues related to its underlying assump-

tions. Traditional LDA represents each class with the corre-

sponding class mean and discriminates between classes based

on the scatters of these class representations with respect to

the total data mean. Such a class discrimination definition

may cause large overlaps of neighboring classes [4], and re-

ceive a sub-optimal result, since an outlier class being far

from the others dominates the solution [4]. Furthermore, in

traditional LDA all classes equally contribute to the within-

class scatter definition [5] based on the assumption of the

same Gaussian distribution for all classes. This assumption

overemphasizes well-separated outlier classes, which should

have lower contribution in the overall within-class scatter

definition. A method that automatically determines opti-

mized class representations for LDA-based projections was

proposed in [6], [7]; however, it also suffers from the class

imbalance problems discussed above. In order to overcome

aforementioned drawbacks of traditional LDA, extensions

imposing weighting strategies for the definition of the within-

class and between-class scatters have been proposed in [8],

[9], [10], [11], [12]. In these methods, the weighting factors

incorporated to the scatter matrices definitions are based on

class statistics, e.g. class cardinality, and class representation

is still assumed to be the class mean.

A novel extension of LDA that exploits intuitions from

saliency [13] is proposed in this paper. A probabilistic cri-

terion is formulated in order to express the samples around

boundary within its original class following a probabilistic

saliency estimation framework [14]. Such a definition is nat-

urally expressed by graph notation, in which several types

of graphs can be exploited. Both fully connected and k-NN

graphs are considered. After defining the probability of each

sample belonging to its corresponding class, this information

is used to define new class representations, as well as new

within-class and between-class scatters. Compared to tradi-

tional LDA and its weighted variants, the proposed Saliency-

based weighted LDA (SwLDA) has shown enhanced perfor-

mance on facial image classification problems.

The remainder of this paper is structured as follows. In

Section 2, we briefly present related works. In Section 3, we

rigorously derive the proposed SwLDA method on the ba-

sis of various weighted LDA methods and saliency estima-

tion. Experimental results on publicly available facial image

datasets are provided in Section 4, and Section 5 concludes

this work.

2. RELATED WORK

In this section, first we briefly describe original LDA and two

of its weighted variants, which have been proposed in order

to overcome shortcomings of LDA related to class imbalance

problems. Later, visual saliency estimation based on the re-

cently proposed probabilistic interpretation [14] is presented.

In the following, we assume that each training sample is

represented by a vector xi ∈ R
D and is followed by a class
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label yi ∈ {1, . . . , C}. A set of training vectors xi, i =
1, . . . , N are used in order to define a linear projection from

the input space R
D to a discriminant subspace R

d such that

the representation of the i-th sample is given by zi = WTxi,

where W ∈ R
D×d is the projection matrix to be learned by

optimizing class discrimination criteria.

2.1. Linear Discriminant Analysis

LDA defines the optimal data projection matrix W by maxi-

mizing the following criterion

J(W) = max
W

tr(WT
SBW)

tr(WTSWW)
, (1)

whereSW , SB are within-class and between-class scatter ma-

trices respectively, and defined as follows:

SW =
∑C

c=1

∑

xi,α
c
i
(xi − µc)(xi − µc)

T , (2)

SB =
∑C

c=1Nc(µc − µ)(µc − µ)T . (3)

In the above, αc
i is an index denoting whether sample i be-

longs to class c, i.e. αc
i = 1 if yi = c and αc

i = 0 oth-

erwise. Nc denotes the cardinality of class c, i.e. Nc =
∑N

i=1 α
c
i and µc denotes the mean vector of class c, i.e. µc =

1
Nc

∑

xi,α
c
i
=1 xi. µ is the total mean vector µ = 1

N

∑N

i=1 xi.

The optimal projection matrix W is obtained through ap-

plying eigenvalue decomposition of the matrix S = S−1
W SB

and keeping the eigenvectors corresponding to the largest (up

to C − 1 in total) eigenvalues.

2.2. Weighted LDA Variants

Weighted versions of LDA aim at scaling the contribution of

each class based on their influences on projection, by defining

appropriate weights. In [11], between-class scatter matrix is

redefined for enhancing robustness in multi-class problems,

as follows:

Sb =
∑C−1

c=1

∑C

j=c+1 Lcjpcpj(µc − µj)(µc − µj)
T , (4)

where pc, pj denote the prior probability of class c, class j,

respectively. Lcj expresses the dissimilarity between class c

and class j, using a distance function in the Euclidean (or a

Mahalanobis) space. In order to reduce the influence of out-

lier classes, an outlier-class-resistant weighted LDA method

is proposed in this work [9] based on Loog’s work [11]. They

express the between-class scatter using (4) and a new within-

class scatter definition is proposed as follows:

Sw =
∑C

c=1

∑Nc

k=1 pcrc(xk − µc)(xk − µc)
T , (5)

where rc =
∑

i6=c
1

Lic
is a relevance-weight between class c

and class i, reducing attention to outlier classes.

Another version of weighted LDA aiming at alleviating

the influence of outlier class is proposed in [10]. They define

the between-class scatter and within-class scatter as follows:

Sb =
∑C−1

c=1

∑C

j=c+1 ncnjw1(∆cj)(µc − µj)(µc − µj)
T , (6)

Sw =
∑C

c=1

∑Nc

k=1 pcw2(∆c:)(xk − µc)(xk − µc)
T , (7)

where nc, nj are the number of samples for class c and class

j, in addition, w1(∆cj) and w2(∆c:) are defined as 1
∆cj

and
1∑

j 6=c ∆cj
, respectively. ∆cj is the Fisher’s discriminant cri-

terion in the discriminant space determined through applying

LDA using the between-class scatter matrix SB and the total

scatter matrix ST = SB + SW , i.e.:

w∗ = argmax
w

{w
T
SBw

wTSTw
} = S−1

T (µc − µj), (8)

∆cj =
w

∗T
SBw

∗

w∗TSTw∗ . (9)

Using the above definition of ∆cj , in the case where a

class is well separated from all others, a smaller value of

w(∆cj) will be used, reducing the influence of that class on

the result. Once the new Sw and St (St = Sw + Sb) are ob-

tained, the final projection matrix W can be determined by

optimizing the following Fisher’s discriminant criterion:

J(W) = argmax
W

tr(WT
SbW)

tr(WTStW) . (10)

2.3. Visual Saliency Estimation

Visual saliency estimation has gained attention during the last

decade, since it can be applied as a pre-processing step for

higher level Computer Vision tasks. Recently, Aytekin et al.

formulated the salient object segmentation problem based on

probabilistic interpretation. Specifically, they defined a prob-

ability mass function P (x) encoding the probability that an

image region (in the sense of pixel, super-pixel or patch) to

depict a salient region. Estimation of P (x) is formulated as

an optimization problem enforcing similar regions to have

similar probabilities, while any prior information regarding

saliency (defined based on the location of each region in the

image lattice) can be exploited. This joint optimization is ex-

pressed as:

argmin
r(x)

(

∑

i(P (x = xi))
2vi +

1
2

(

∑

i,j

(

(

P (x = xi)
)2

− P (x = xi)P (x = xj)
)

wi,j

))

(11)

s.t.
∑

i P (x = xi) = 1,

where vi ≥ 0 denotes prior information for region i by non-

negative values and wij expresses the similarity of regions i

and j. The optimization problem in (11) can be expressed

using a matrix notation as follows:

p∗ = argmin
p

(pTHp), (12)

H = D−W +V, (13)

s.t. pT1 = 1,



where p is a vector having elements pi = P (x = xi) corre-

sponding to the probability of each region to be salient. W is

the affinity matrix of a graph having as vertices for the region

representations and D is the corresponding diagonal matrix

having elements equal to Dii =
∑

j Wij . V is a diagonal

matrix having elements [V]ii = vi. In visual saliency, the

element Vii expresses the a priori knowledge that an image

location belongs to background, that is introduced by the user.

As has been shown in [14], the optimization problem in

(12) has a global optimum given by: p∗
pse = H−11. Inter-

estingly, the above solution is equivalent to an one-class clas-

sification model, making a connection between salient object

segmentation and one-class classification problems. In the

following, we will use this connection in order to derive a new

definition for class-representation and scatter matrices calcu-

lation in LDA.

3. SALIENCY-BASED WEIGHTED LINEAR

DISCRIMINANT ANALYSIS

This section describes in detail the proposed weighted ver-

sions of LDA. We define the contribution of each sample to

the corresponding class, and then new class representations

and scatter matrices are proposed accordingly. We start by

describing the proposed sample weights.

3.1. Sample Weights and Class Representation

Weighted LDA variants represent each class with the corre-

sponding mean vector and define weights based on pair-wise

class distances to address the outlier class problem. Such

mutation yields a certain improvement over traditional LDA.

Nevertheless, it neglects the influences of outlier samples

within each class [12], which may affect the classification

result greatly. This is due to the fact that all class samples

equally contribute to the definition of the class representation

and scatter matrix calculation.

In our work, we determine the contribution of each sample

based on its class saliency information. We define the class

saliency information of a sample xi based on its probability to

belong to its true class yi. In order to do so, we calculate the

probability mass functionPc(x) of each class c independently

following the probabilistic saliency estimation (PSE) in [14].

That is, for each class c, we form the corresponding graph

GC = {Xc,Wc}, where Xc ∈ R
D×Nc is a matrix formed

by the samples belonging to class c and Wc ∈ R
Nc×Nc is

the graph weight matrix expressing the similarity between the

class samples. Any type of graph can be used to this end. In

our experiments we have used fully connected and the k-NN

graphs, using the heat kernel function:

Wij = exp
(

−
‖xi−xj‖

2σ2

)

, (14)

where the value of σ is set equal to the mean Euclidean dis-

tance between the class samples, which is the natural scaling

factor for each class.

We define a priori saliency information as misclassification-

based probability for the class data to be set in the diagonal

elements of the matrix Vc. Misclassification-based proba-

bility assumes that a sample is less probable to have high

saliency information if it is closer to another class, when

compared to its true class. In this case, the elements of Vc

are set equal to:

Vc,ii =







0, if dcc,i < min
k 6=c

dkc,i,

dc
c,i

min
k 6=c

dk
c,i

, otherwise,
(15)

where dkc,i = ‖xc,i − µk‖
2
2. In this case, a sample which is

close to another class is assigned to low saliency information,

even if it may be close to the center of its class.

After having defined the matrices Wc and Vc, the prob-

ability of each sample xc,i to belong to class c is given by:

pc = H−1
c 1, where Hc = Dc − Wc + Vc and Dc,ii =

∑

j Wc,ij . Having obtained pc ∈ R
Nc , c = 1, . . . , C, we

define a new class representation as mc = Xcpc.

3.2. Scatter Matrices Definition

By exploiting class-specific saliency information described

above, we can define within-class scatter matrix in two dif-

ferent ways. The first one is to incorporate pc in Sw as:

S
(1)
w =

∑C

c=1

∑Nc

j=1 pc,j(xc,j − µc)(xc,j − µc)
T , (16)

where xc,j denotes j-th sample in class c, pc,j is saliency

score for j-th sample in class c. The other one is inspired

by relevance weighted LDA mentioned in section 2, as:

S
(2)
w =

∑C

c=1

∑Nc

j=1 pc,jrc(xc,j − µc)(xc,j − µc)
T . (17)

Here rc =
∑

i6=c
1

Lic
is a relevance-weight, where Lic is de-

fined based on the Euclidean distance between pairwise mean

vectors of class i and class c, as (18):

Lic =
√

(µi − µc)
T (µi − µc). (18)

Definitions of between-class scatter matrix in aforemen-

tioned LDA methods simply maximize either the variations

between each class mean vector and the total mean vector,

or the variations between class pairs. Here, we propose four

types of between-class scatter matrices, which are not only

based on the aforementioned definition of Sb, but also cap-

ture the structure inside each class. The first definition is the

same as (3):

S
(1)
b =

∑C

c=1Nc(µc − µ)(µc − µ)T . (19)

The second one uses saliency scores pc, when generating

new class representations, as follows:

µ̂c = Xcpc, (20)

S
(2)
b =

∑C

c=1(µ̂c − µ)(µ̂c − µ)T , (21)



Table 1. Classification accuracy of proposed SwLDA

Dataset BU KANADE JAFFE ORL YALE AR

K 1 min(5, 0.1 ∗Nc) 1 min(5, 0.1 ∗Nc) 1 min(5, 0.1 ∗Nc) 1 min(5, 0.1 ∗Nc) 1 min(5, 0.1 ∗Nc) 1 min(5, 0.1 ∗Nc)
SwLDA11 0.5714 0.5714 0.6816 0.6939 0.5619 0.5762 0.9700 0.9700 0.9597 0.9564 0.9696 0.9696

SwLDA21 0.5714 0.5686 0.6816 0.6816 0.5619 0.5762 0.9700 0.9700 0.9597 0.9568 0.9696 0.9696

SwLDA31 0.5886 0.5829 0.6776 0.6776 0.5524 0.5762 0.9850 0.9850 0.9597 0.9556 0.9696 0.9692

SwLDA41 0.6500 0.6529 0.7020 0.6980 0.5905 0.5857 0.9850 0.9850 0.9597 0.9568 0.9696 0.9696

SwLDA12 0.5800 0.5814 0.6816 0.6816 0.5667 0.5667 0.9850 0.9850 0.9589 0.9564 0.9692 0.9688

SwLDA22 0.5800 0.5814 0.6816 0.6816 0.5667 0.5571 0.9850 0.9850 0.9589 0.9572 0.9684 0.9684

SwLDA32 0.6243 0.6200 0.6776 0.6776 0.5286 0.5238 0.9600 0.9600 0.9589 0.9572 0.9684 0.9684

SwLDA42 0.6786 0.6743 0.7224 0.7184 0.5476 0.5524 0.9450 0.9450 0.9593 0.9572 0.9696 0.9692

Table 2. Results comparison

Dataset BU KANADE JAFFE ORL YALE AR

LDA 0.5729 0.6898 0.5571 0.9725 0.9593 0.9688

[9] 0.5743 0.6857 0.5714 0.9800 0.9564 0.9681

[10] 0.5957 0.6898 0.5381 0.9800 0.9597 0.9692

SwLDA41 0.6500 0.7020 0.5905 0.9850 0.9597 0.9696

SwLDA42 0.6786 0.7224 0.5476 0.9450 0.9593 0.9696

where Xc contains all samples in class c, µ̂c is the new class

representation or weighted center of class c. The third defini-

tion extends (21) to exploit the relationships between pairs of

new class representation for each class, as follows:

S
(3)
b =

∑C

c1=1

∑C

c2=1(µ̂c1
− µ̂c2

)(µ̂c1
− µ̂c2

)T . (22)

The last definition, S
(4)
b , intends to maximize discrimina-

tion between every sample in one class with other new class

representations, meanwhile takes into account of each sam-

ple’s saliency scores, as follows:

S
(4)
b =

∑C

c1=1

∑C
c2=1,
c2 6=c1

∑Nc1

j=1 pc1,j(xc1,j − µ̂c2
)(xc1,j − µ̂c2

)T ,

(23)

where Nc1 is the cardinality of class c1.

3.3. Discriminant Criterion

Using the above described scatter matrices, several optimiza-

tion criteria can be formed as follows:

J(W) = argmax
W

tr(WT
S

(i)
b

W)

tr(WTS
(ij)
t W)

, (24)

where S
(ij)
t = S

(j)
w + S

(i)
b , i ∈ {1, 2, 3, 4} and j ∈ {1, 2}.

After obtaining projection matrix W by eigenvalue decom-

position, we map corresponding class representations and test

samples by the optimal W, and then nearest centroid classi-

fier is applied for classification. It should be noted that when

H or St are singular, a regularized version is used.

4. EXPERIMENT RESULTS

In our experiments, we evaluate the performance of pro-

posed SwLDA, traditional LDA and two weighted LDA

approaches mentioned in section 2 on six public facial im-

age datasets: BU, KANADE, JAFFE, ORL, YALE and AR.

We evaluate the performance of the proposed SwLDA ap-

proaches, as illustrated in Table 1. The results of SwLDAij

illustrate classification accuracy obtained by using the matri-

ces S
(ij)
t and S

(i)
b , i ∈ {1, 2, 3, 4}, j ∈ {1, 2}. The result of

traditional LDA is considered as baseline. The results com-

parison of baseline, Tang’s work [9], Jarchi’s work [10] and

our work are presented in Table 2. We implement standard-

ization on all datasets before training and split each dataset

into 5 folds for cross-validation. When obtaining Wc, we

select k-NN graphs with k ∈ min(5, 0.1 ∗ Nc) or fully con-

nected graphs to evaluate its impact on the results. As shown,

the best performances over datasets BU and KANADE are

both achieved by using SwLDA42 with fully connected

graphs. SwLDA41 is the most effective over dataset JAFFE.

The maximal improvement is 10.57% on dataset BU us-

ing SwLDA42 with fully connected graphs, compared to

the result of traditional LDA. That over Tang’s work [9] is

0.14% and over Jarchi’s work [10] is 2.28%. SwLDA12 and

SwLDA22 work better than SwLDA32 and SwLDA42 ap-

parently on datasets JAFFE and ORL. Fully connected graphs

works better than k-NN graphs does over YALE dataset for

all cases. Graph connection does not affect the classifica-

tion accuracy using SwLDA11, SwLDA21, SwLDA41,

SwLDA22 and SwLDA32 over dataset AR.

5. CONCLUSION

In this paper, we propose weighted LDA variants based on

a probabilistic definition of visual saliency estimation. We

follow a class-specific saliency estimation process in order to

determine the contribution of each sample in the optimization

problems solved for discriminant subspace learning. Then,

we employ our new approaches to six public datasets for eval-

uation and comparison with related LDA methods. Our new

definitions target to reveal connections between each sample

in every class, and further solve shortcomings in weighted

LDA variants. Experimental results sufficiently demonstrate

that the highest classification accuracy is always with one of

our proposed approaches over these six facial image datasets.
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