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DETECTING SMALL OBJECTS IN HIGH RESOLUTION IMAGES WITH
INTEGRAL FISHER SCORE

Roberto Leyva ', Victor Sanchez ' and Chang-Tsun Li T

T University of Warwick, UK, and * Charles Sturt University, Australia

ABSTRACT

Nowadays, big imaging data are very common in many fields
of study. As a result, detecting small objects in very large im-
ages is challenging and computationally demanding. Taking
advantage of the intrinsic cumulative properties of the Fisher
Score, we propose the Integral Fisher Score (IFS) for low-
complexity and accurate object detection in big imaging data.
The IFS, which is a multi-dimensional extension of the In-
tegral Image, allows computing the Fisher Vector associated
with a spatial region using only four operations. This consid-
erably reduces the computational cost of searching for a small
query object on a very large target image. Evaluations for the
detection of small object on high-resolution HUB telescope
and digital pathology images show that IFS attains a high ac-
curacy with short processing times.

Index Terms— Big data, Fisher Vectors, object detection,
integral image, local features

1. INTRODUCTION

Large images are nowadays very more common in many
fields, e.g., medicine, digital microscopy and astronomy.
Consequently, many basic computer vision tasks, such as ob-
ject detection, now require a significant computational effort
to deal with these big data [1]. Object detection is a relatively
fast and simple task if the target image is small, multiple
copies of the query object do not appear in the target image,
and other objects are concisely dissimilar to the query object.
However, this task becomes very computationally complex
and challenging if the target image is very large and depicts
several objects that are similar to the query one, or the query
object is very small compared to the target image. To im-
prove detection accuracy, several efficient methods based on
local features [2], e.g., SIFT, and neural networks have been
proposed [3]. Methods based on local features require only
an example of the query object, which is detected by match-
ing its features with those extracted from the target image.
Therefore, these methods can detect any object with no a
priori training process. On the other hand, methods based
on neural networks require several examples of the query ob-
ject(s) for training [4]. Thus, they are restricted to detecting
the object(s) provided in the training process.

Despite their effectiveness, the accuracy of the methods
based on local features heavily depends on how exhaustive
the search for similar features is. An exhaustive search pro-
vides a very high accuracy at the expense of long computa-
tional times. This becomes an important issue when dealing
with very large target images and small query objects, as mul-
tiple overlapping regions of different sizes must be analyzed
to accurately detect the object. In this paper, we propose the
Integral Fisher Score (IFS) to solve this issue. We concentrate
on local features due to the flexibility they afford to detect
any query object with no training process. Our proposed IFS,
which extends the concept of Integral Image, allows comput-
ing the Fisher Vector (FV) associated with a spatial region
with a very low computational complexity. This allows accu-
rately detecting small objects in big imaging data by search-
ing over several multi-scale regions very fast. Evaluations
on high-resolution HUB telescope and digital pathology im-
ages with very small query objects show that our proposed
IFS considerably reduces computational demands compared
to the state-of-the-art methods, while providing a high detec-
tion accuracy.

The rest of this paper is organized as follows. Section 2
presents a brief review of the relevant previous work. Section
3 details the proposed IFS. Section 4 presents and discusses
the evaluation results. Finally, section 5 concludes this paper.

2. PREVIOUS WORK

Local features have been shown to significantly improve ac-
curacy for image categorization [5] and object detection [6, 7]
tasks. For the case of object detection, FVs have further im-
proved the detection accuracy. [8, 9, 10, 11]. A FV is a high
dimensional vector that represents a sub-set of features, ¢, by
concatenating their gradient projection over a model, M, that
represents the distribution of a feature set, ), with ¢ C @
[8, 12]. In object detection, @ is extracted from the target im-
age, ¢ is extracted from a region of the target image where
the query object may be present, and M is usually a Gaus-
sian Mixture Model (GMM). Despite their ability to improve
detection accuracy, FVs are very computationally complex
[13, 14], particularly when dealing with big imaging data and
small query objects [15]. The are two main ways to address
this problem at the expense of sacrificing the accuracy. The
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Fig. 1. Object detection. The GMM of densely extracted features of the target image is used for soft assignment. The IFS generates a FV for
each support region. The correlation between each FV of the target image and that of the query object is computed to detect the object.

first one involves employing parameter constraint techniques
on M; e.g., constraining the number of components of the
GMM, the number of iterations to fit the GMM, or the size of
@ used to fit the GMM [16, 17, 13]. The second one involves
using a sub-optimal M but with more descriptive features,
e.g., by adding color information [18], using improved gradi-
ent sources, or hybrid CNN features [19, 14].

Recently, the work in [20] has proposed using a saliency
detector as a first step to detect potential areas where the query
object may be found. This method only computes the FVs of
the salient regions, thus reducing processing times. A similar
idea is proposed in [21], which computes FVs from super-
pixels computed for specific areas.

3. SMALL OBJECT DETECTION WITH IFS

Fig. 1 depicts the framework for small object detection in big
imaging data using our proposed IFS. The framework densely
extracts features from the target image, whose distribution is
fitted to a GMM. The GMM provides the parameters for soft
assignment and to map every feature into a high dimensional
space. The framework then calculates the IFS from the pro-
jected features. Using a pyramid of scales to define several
support regions in an overlapping fashion, it computes the FV
of each support region using the corresponding IFS — this re-
quires only four operations. Finally, the correlation between
each FV of the target image and the FV of the query object is
measured to find the exact location of the object.

Given an N-component GMM representing the distribu-
tion of the features extracted from the target image, our IFS
projects each feature, z,,, via soft assignment onto the n*”
distribution component:
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where p, and § = {wy,, yn,0,} are the posterior and pa-
rameter set (weight, mean, standard deviation) of the nth
component, respectively. In the traditional Fisher Score (FS),
the gradient vector that represents the FS of a feature set Z =
{z1,..-,2m ..., 2m} is given by the concatenation of the

corresponding GZ vectors, GZ = [GF  GF QP,Z g]%,],
where GZ, correspondlng to the n» GMM component is:

(2a)
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Note that Eq. 2a sums M features in an unordered manner.
We can easily enclose these M features in a spatial region,
s, defined by zg < z < x7 and yp < y < y; within an
{z,y} plane as Fig. 2a illustrates. Therefore, Eq. 2a can be

re-written as follows:
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It is interesting to note that Eq. 3 is very similar to com-
puting the Integral Image of a spatial region s. Let us recall
that the Integral Image J,, up to point p = {z,, ¥, } within an

image [ is given by:
> Ixy). )
1<z<zy
1<y<l‘/p

To compute the Integral Image of an area s defined by four
points, {a, b, ¢, d} (see Fig. 2b) one can simply compute:

Z I(l‘,y):
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where x, = 2.,y = x4 and Y, = Yp, Y = Yq. Using the
Integral Image generated by the set of GZ™ values (see Fig.
2a), Eq. 3 can be computed with four operations:

GZ =g, +Jt, - (TZ +TL), (6)
1 m — Mn
Ton = = 2 () (Z — ) )

where © specifies that the Integral Image is used to compute
gf , and p is the spatial region defined by 1 < = < x, and
1 < y < yp. The proposed IFS for region s is then:

¢z =[6¢ 67 ¢Z .. G% (8)
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Fig. 2. a) IFS: features in region s are projected and summed using the Integral Image of each dimension of the projection. b) Region s
whose Integral Image is computed using the Integral Image values of {a, b, ¢, d}. ¢) FVs computed in a multi-scale overlapping fashion.

After computing the IFS, the corresponding FV, Fy, is [12]:
Fs =sign (fs) | fs]%, (%a)

fs =\/GZ (67)". (9b)

where « is a constant used for power-¢2-normalisation. The
correlation, p,, between the query object’s FV, F,, and each
F extracted from the target image (see Fig. 2c) indicates that
the object is present when p, = 1:

F FT

pe = i (10)
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It is important to note some key differences between our
IFS and the work in [22], which also employs the Integral Im-
age. The work in [22] assigns each feature an index pointing
to the GMM component that best models the feature. It then
uses these indices to compute an Integral Image. Our IFS,
on the other hand, uses the features’ high dimensional projec-
tions to compute Integral Images, one for each dimension of
the projection. This allows our IFS to exploit the full power
of FVs when working with features.

4. PERFORMANCE EVALUATION

Our evaluations use 22 high-resolution HUB telescope [23]
and digital pathology images [24] with sizes ranging from
1100 x 1100 to 27k x 30k pixels for the detection of very
small query objects representing 0.005%—2.1% of the target
image’s size (see Fig. 3). We compare the following four ob-
ject detection methods. 1. IFS: our IFS with SIFT features
(Fig. 1). 2. FV: traditional FS with SIFT features [8]. 3. S-
FV: saliency + traditional FS with SIFT features [20]. 4. FM:
feature matching (SIFT) with brute force [2]. For the first
three methods, a detected query object whose detected region
covers at least 80% of object’s spatial extent is a true positive
(TP), otherwise is a false positive (FP). If the query object is
not present in the target image and the maximum correlation,
ps, 1s below a threshold, the outcome is a true negative (TN),
otherwise is a false negative (FN). For FM, if at least 50%
of the matched features correspond to the query object, then

Fig. 3. Example query objects detected in the HUB telescope (1st
row-galaxies/stars) and digital pathology (2nd row-cells) images.
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Fig. 4. ROC curve of evaluated methods.

the object is correctly identified (TP). If less than 50% of the
query object’s features are matched in the target image and the
object is not present, the outcome is a TN. Fig. 4 shows the
accuracy of the evaluated methods in terms of the Receiver
Operating Characteristic (ROC) curve. Table 1 summarises
the results from the ROC curve using the Equal Error Rate
(EER), and tabulates the average processing time per image.
Experiments are run on a Intel i5 CPU with 16 GB of RAM.
We observe significant improvements using the IFS over S-
FV and FM. As expected, IFS and FV attain the same detec-
tion accuracy, as both are equivalent feature representations
and compute the same number of FVs for the same regions
(at the same number of scales) of the target image. The main
difference between them is the computational times. IFS re-



Table 1. Performance of evaluated methods.
Method  Average processing time per image (sec.) EER

IFS 224.6 0.198
FV 1075.0 0.198
S-FV 10.5 0.278
FM 22.1 0.321

Fig. 5. Saliency detector probability map (right column) for two
target mages with different light variations (left column).

duces c.a. five times the computational cost of FV. IFS has a
complexity of O(4SK) for S regions and K scales, while the
traditional FS has a complexity of O(M SK) for M features.
We use K = 5 scales for S = {0.5,1,1.25,1.5, 2} times the
query object’s size.

Note that S-FV attains the shortest average processing
time, but at the expense of a low detection accuracy. S-FV cal-
culates the FVs only for the areas retrieved by the saliency de-
tector, therefore reducing the number of computations. How-
ever, if the saliency detector is not robust to light variations
and noise, the accuracy is severely hindered. Fig. 5 illus-
trates this problem: in the first row, the target image has no
significant light variations. Therefore, the saliency detector
successfully detects a limited number of regions where the
query object may be present. In the second row, the target
image has significant light variations. The saliency detector
consequently retrieves three large overlapping regions miss-
ing completely the query object. FM attains the worst de-
tection accuracy. This method matches features individually
and not as a whole for a specific region. Therefore, when
searching for a very small object on a large target image with
very similar objects, the features from the query object may
be matched all over the target image, failing to correctly de-

Fig. 6. FM: features of the query object are matched individually
all over the target image.
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Fig. 7. Example detections of IFS. The query object represents
1.2% (top) and 0.005% (bottom) of target image’s size.

tect the specific region where the query object is. This issue is
illustrated in Fig. 6. IFS, on the contrary, does not fail when
the target image depicts several objects that are very similar
to the query object, as it matches feature compositions cor-
responding to local regions and not individual features. Fig.
7 shows successful example detections of IFS. Overall, our
IFS maintains the high detection accuracy of FV, while sig-
nificantly reducing computational times.

5. CONCLUSIONS

This paper proposed the Integral Fisher Score (IFS) for ac-
curate and low-complexity detection of very small objects on
high-resolution images. Our IFS is a new way to compute
Fisher Vectors that significantly reduces the number of pro-
jected features needed for calculation. This allows searching
for an object by analyzing several overlapping regions at mul-
tiple scales in a fast manner. Evaluations on challenging HUB
telescope and digital pathology images show that IFS can sig-
nificantly speed up the detection process of very small objects
while attaining a high accuracy.
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