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Abstract—In this work we propose a method for optimizing
the lossy compression for a network of diverse reconstruction
systems. We focus on adapting a standard image compression
method to a set of candidate displays, presenting the decom-
pressed signals to viewers. Each display is modeled as a linear
operator applied after decompression, and its probability to
serve a network user. We formulate a complicated operational
rate-distortion optimization trading-off the network’s expected
mean-squared reconstruction error and the compression bit-cost.
Using the alternating direction method of multipliers (ADMM)
we develop an iterative procedure where the network structure
is separated from the compression method, enabling the reliance
on standard compression techniques. We present experimental
results showing our method to be the best approach for adjusting
high bit-rate image compression (using the state-of-the-art HEVC
standard) to a set of displays modeled as blur degradations.

Index Terms—Rate-distortion optimization, signal compression,
image compression, image deblurring, alternating direction
method of multipliers (ADMM).

I. INTRODUCTION

Multimedia content is often distributed using broadcast
and “on-demand” services reaching consumers with various
display devices. Therefore, rendering the image/video can
widely differ due to various technical aspects such as the
specific display technology, different screen resolutions, etc.
Such multimedia distribution systems fundamentally rely on
lossy compression in order to meet storage and transmission-
bandwidth limitations. However, while the displayed signals
are the important outcomes of the flow, the compression
is usually optimized only with respect to the decompressed
signal, ignoring the subsequent processing and degradations
occurring at the different displays. In this work we study the
problem of optimizing signal compression to a known set of
display settings having different usage probabilities.

We recently [1]] proposed an optimization methodology to
adjust standard image/video compression to a known type
of display presenting the decompressed signal to the viewer.
Our framework essentially pre-compensates the display degra-
dation from the compression standpoint in a rate-distortion
optimized manner. Here we extend the problem settings of
[1] to optimize the compression with respect to a set of
display devices, described by several linear rendering models
and their probabilities to be in use by consumers. One can
interpret the display models and their usage probabilities as a
characterization of a multimedia distribution network.

We formulate a rate-distortion optimization to trade-off the
compression bit-cost and the expected mean-squared error of
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the displayed signal. Similar to our previous works [ 1]], [2], we
address the computationally hard optimization using the alter-
nating direction method of multipliers (ADMM) [3]] translating
the task to sequentially applying standard compressions (that
are network independent!) and ¢5-constrained deconvolutions
expressing the network structure. This procedure can be gener-
ically adapted to various network layouts and to any standard
compression technique, providing network-optimized binary
data that is compatible with desired standard decompression
processes.

The problem settings we address here resemble the frame-
work of (lossy) compression for computations applied on
the decompressed data (see, e.g., [4], [5]). Yet, the post-
decompression processing we consider here is mainly an
unwanted degradation, in contrast to a desired computation.
However, the ability of our method to adapt standard compres-
sion to post-decompression processing may be utilized also
for compression tasks involving computations necessary to be
carried out on the decompressed data.

The important problem of various display devices is treated
also from the perspective of scalable image/video coding
methods (see, e.g., the extension of the HEVC standard
in [6]]), where the signal is coded in layers of increasing
quality/resolution to be peeled by the network or the user
device. In contrast, we take here another viewpoint on the
problem, optimizing a single (non-layered) compression of a
signal to a given collection of rendering models.

We demonstrate our general approach for image compres-
sion using the state-of-the-art HEVC standard coupled with
various simplified display models in the form of linear blur
operators following the decompression. While another recent
method [[7] optimizes image rendering with respect to a per-
ceptual quality metric, we present here (and in [1]]) a method
to globally optimize the flow of compression, decompression
and rendering. Since our optimization goal and the distortion
type differ from those in [7], the two methods cannot be
quantitatively compared. In our experiments we compared our
approach to regular HEVC compression, and to preceding the
compression with the Expected Patch Log Likelihood (EPLL)
deblurring method [8] adapted to the same fidelity term as
we use in our method. The rate-distortion performance of the
various methods clearly exhibit our method as the leading
approach at high bit-rate compression.

II. THE PROPOSED METHOD

A. Problem Formulation

We consider the network structure described in Fig. [I}
starting with an input signal in the form of an N-length
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Fig. 1. The general network structure considered in this paper.

column-vector x € R that is compressed and distributed
over the network to users having various reconstruction sys-
tems. We describe the lossy compression procedure using the
function C' : RN — B, mapping the N-dimensional input-
signal domain to the discrete set 5 of compressed repre-
sentations in the form of variable-length binary descriptions.
The compression of x is denoted by b C (x), where
b € B is the compressed data to transmit over the network
to an arbitrary number of users. The users have reconstruction
systems that first decompress the data via v = F (b), where
F : B — & maps the binary compressed representations
in B to the respective decompressed signals in the discrete
set S C RY. The decompressed signal v (which is an N-
length column vector) further goes through a linear operation,
associated with a processing/degradation stage, that produces
the reconstruction available to the user. In the case of visual
signals, the post-decompression component may be a display
rendering the viewed image. We assume a user may have
one of K reconstruction systems (where K is a positive
finite integer), differing in the linear operator applied after
decompression. The post-decompression linear operator of the
k" system type (k = 1, ..., K) is denoted by the N x N matrix
H,,, producing a corresponding reconstructed (output) signal

D

We assume the portions of using each of the K reconstruc-
tion systems are known and denoted by p1, ..., px > 0, where
Zszl pr = 1. Accordingly, a network user can be modeled
to have a reconstruction system of a type corresponding to
a discrete random variable over the values {1,..., K} with
the respective probabilities p1, ..., px. Then, by (I) the recon-
structed signal is a random vector y having the value yj; with
probability p; for £k = 1,..., K. For a given (deterministic)
input signal x and its decompressed version v, and by the
network structure, we quantify the expected mean-squared-
error (MSE) of the reconstruction as

Y = HkV.

K
1
D (x,v) £ = > pi [x — Hyvl. 2)
k=1

Our goal here is to optimize the rate-distortion performance
of the network for a given input signal x. Accordingly, we
formulate the task as the minimization of the compression
bit-cost under constrained expected distortion , namely,

v =argmin R (v)
veS
. LXK , (3)
subject to N;PkHX*HkVHQ <d

where R (v) evaluates the length of the binary compressed
description b € B matched to the decompressed signal v, and
d > 0 is the allowed distortion.

Similar to contemporary compression tasks (see, e.g., [9],
[10]), we turn our optimization (3) into its unconstrained
Lagrangian form

K

A - 1

v =agmin R(v) + 3 D pele—Hivly @
ve k=1

where A > 0 is a Lagrange multiplier matching to a dis-
tortion constraint dy > 0 (such coding without a specified
distortion constraint is prevalent, for instance, in video coding
[[1Q]). Since we consider the compression of high-dimensional
signals (i.e., IV is large) the discrete set S is prohibitively
large, meaning that a direct solution of the Lagrangian form in
() is impractical for arbitrarily structured matrices {Hj}1_,.
Note that when Hy = I for £ = 1,..., K, the Lagrangian
optimization in (@) reduces to the standard compression form
[OlI, [11]], disregarding the network-oriented problem, and prac-
tically solvable using block-based architectures that decom-
pose the problem to a sequence of block-level optimizations
of sufficiently low dimensions.

B. Practical Iterative Procedure

We employ the alternating direction method of multipliers
(ADMM) technique [3]] to resolve the computationally chal-
lenginé problem (@) when the post-decompression operators
{Hy},_, are arbitrarily structured. We begin by splitting the



optimization variable such that (@) becomes
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where z € RY is an auxiliary variable that is not limited to
the discrete set S. Applying the scaled form of the augmented
Lagrangian and the method of multipliers [3| Ch. 2] on (5)
yields an iterative process formulated as
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where t denotes the iteration index, u(®) € R is the scaled

dual variable, and f is an auxiliary parameter introduced by
the augmented Lagrangian. We get the ADMM form of the
problem by applying one iteration of alternating minimization
on (6), leading to the following sequence of easier optimiza-
tions

2
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where z() = z(t=1) — u® and v = v® + u®_ Nicely,
the compression architecture {S, R} and the network layout
described by {Hj, pk}szl were separated by the ADMM to
distinct (and simpler) optimization tasks.

The optimization formulation in coincides with the
Lagrangian rate-distortion optimization utilized for standard
compression tasks employing the usual (network independent)
MSE distortion metric (here the effective Lagrange multiplier
is A = BTN). Hence, we propose to replace the solution of
with a standard compression (and decompression) method
— even one that does not exactly follow the Lagrangian
optimization in (8). We refer to the standard compression and
decompression as

b = StandardCompress (i(t), 9) (11

v = StandardDecompress (b(t)> (12)

where 6 is a parameter generalizing the Lagrange multiplier
part in regulating the rate-distortion tradeoff (see Algorithm ).
The last generalizations establish the proposed procedure as a
generic methodology for optimizing any compression method
to particular network layouts.

The optimization in (9] can be interpreted as an extended (5-
constrained deconvolution problem, here including a combina-
tion of several fidelity terms associated with the degradation

operators {Hk}szl. The analytic solution of @) is
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exhibiting it as a linear combination of x and v(*). We define

the parameter = gf and use it in the generic method

summarized in Algorithm

Algorithm 1 Generic Network-Optimized Compression

1: Inputs: x, 6, B

2. Initialize t =0, 29 =x , u® = 0.
3: repeat

4: t+—t+1

5. 7)) — 5(t=1) _ )

6: b = StandardCompress (Z(t), 9)
7: v(®) = StandardDecompress (b(t)>
8: v = @ L y®

K - ~
oo 2® = (> pHIH; + BI pHFx + pv®
=1

0w 25 4 (50— 50)

11: until stopping criterion is satisfied

12: Output: b, which is the binary compressed data obtained
in the last iteration.

k

III. EXPERIMENTAL RESULTS

Let us demonstrate our method for optimizing the HEVC
still-image compression standard (implemented in the software
in [12]]) to three possible blur operators degrading the de-
compressed image. The post-decompression linear operators
H,, H,, and Hj3 correspond to shift-invariant Gaussian blur
kernels (of 15 x 15 pixels size) having standard deviations 0.6,
0.8, and 1, respectively, and usage probabilities of p; = 0.6,
p2 = 0.3, and p3 = 0.1.

To evaluate our method we constructed three competing
techniques also using HEVC image compression, and com-
pared them to our method'] The PSNR-bitrate curves of the
examined methods (see, e.g., Fig. were created for each
of the 12 examined images (see Table [[) by applying their
HEVC component for 9 quality parameter (QP) values equally-
spaced between 1 to 41. The first competing approach is to
regularly compress without any pre/post processing (while the
decompression is still followed by the inevitable deterioration).
As expected, this naive method performs poorly. The second
competing procedure precedes the compression with decon-
volution using the Expected Patch Log Likelihood (EPLL)
method relying on a Gaussian Mixture Model (GMM) prior
learned for natural images (see [8]]). The EPLL implementation
used here is with respect to a fidelity term corresponding to (2)
and suitable parameter settings. The third competing method

IThe Peak Signal-to-Noise Ratio (PSNR) here relies on the expected
reconstruction MSE given in , ie, PSNR = 10log,, (P?/D (x,v))
where x and v are the input and the decompressed signals, respectively, and
P is the maximal signal-value generally possible.

)



(a) Regular Decompressed: 1.65 bpp  (b) Regular: Display 1 (38.42dB)

(c) Regular: Display 2 (35.11 dB) (d) Regular: Display 3 (33.28 dB)

(e) Proposed Decompressed: 1.61 bpp (f) Proposed: Display 1 (46.60 dB)

(g) Proposed: Display 2 (39.52 dB) (h) Proposed: Display 3 (35.38 dB)

Fig. 2. The regular and the proposed method applied for the 'Flower and Bugs’ image. The denoted PSNR values in this figure are for the individual
reconstructions, i.e., using the regular MSE and not the expected one from @ that is used in the rest of the paper.

is our pre-compensating compression from [}, optimized only
for a single display (corresponding to the highest probability).

The implementation of the proposed method (Algorithm [T)
uses a B value based on the HEVC quality parameter (the
[ value here is 10 times the value formulated in ). The
stopping criterion was defined to a maximal number of 40
iterations or to end earlier when v(¥) and z(*) converge or
diverge (as described in [1])).

The evaluation of the PSNR-bitrate curves summarized in
Table[l|and exemplified for one image in Fig. [3b] showing that
our method outperforms the other techniques at high bit-rates,
where we achieve significant PSNR gains compared to the
regular, the EPLL-based, and the single display optimization
procedures. The average PSNR gains in Table | were computed
based on the BD-PSNR metric [[13], for the high bit-rate
range (here defined by QP values 1,6,11,16).

In Figure [2] we present visual results for the compression of
the "Flower and Bugs’ image (see Fig.[3al where only a portion
of the input image is presented due to lack of space). Figures
[2a) and [2¢] exhibit the decompressed images (before degra-
dation) using the regular approach and the proposed method,
respectively. Figures and 2f}{2h] show the three simulated
displayed versions of the decompressed images. Evidently,
we get significantly higher PSNR values (that correspond to
the regular MSE measure) at a similar (slightly lower) bit-
rate. Our method produces an overly-sharpened decompressed
image (Fig. [2¢) that is later balanced with the rendering blur,
leading to better displayed images (Figs. 2f}2h).

IV. CONCLUSION

We presented a method for optimizing compression to a
set of reconstruction systems, each has a different linear
processing/degradation after decompression. Using ADMM
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Fig. 3. Methods evaluation for the image "Flower and Bugs’.
TABLE I
METHOD EVALUATION FOR 12 IMAGES
Dataset Image Average PSNR Gains at High Bit-Rates
Proposed | Proposed Proposed
over over over
Regular EPLL Single Display
15 Almonds 5.25 0.47 0.49
TEST Cards 4.83 0.56 0.35
IMAGES Duck toys 4.83 0.56 0.49
300x300 Garden table 4.70 0.48 0.35
[16] House & lawn 3.53 1.36 0.25
UCID Tree 3.83 1.18 0.20
384x512 Garden 3.26 1.44 0.17
Teddy bear 4.96 0.73 0.48
171 Bears 4.73 0.64 0.35
Berkeley Boats 4.05 0.90 0.28
481x321 Butterfly 4.85 0.67 0.39
Flower & Bugs 4.83 0.74 0.49




we established a generic compression procedure relying on
a standard compression technique. Experiments for adjusting
image compression (using the HEVC standard) to a set of blur
operators modeling display degradations showed our method
as the leading approach for high bit-rate compression.
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