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ABSTRACT

This paper addresses the search for a fast and meaningful

image segmentation in the context of k-means clustering.

The proposed method builds on a widely-used local version

of Lloyd’s algorithm, called Simple Linear Iterative Cluster-

ing (SLIC). We propose an algorithm which extends SLIC to

dynamically adjust the local search, adopting superpixel reso-

lution dynamically to structure existent in the image, and thus

provides for more meaningful superpixels in the same linear

runtime as standard SLIC. The proposed method is evaluated

against state-of-the-art techniques and improved boundary

adherence and undersegmentation error are observed, whilst

still remaining among the fastest algorithms which are tested.

Index Terms— Image segmentation, Clustering algo-

rithms, Image texture analysis

1. INTRODUCTION

Image segmentation continues to be a focus of great attention

in the field of computer vision. This is, primarily, because

segmentation is a key pre-processing step in a broad range

of applications (e.g. [1, 2, 3]). In particular, superpixel seg-

mentation is a prominent technique that has been applied to

a wide range of computer vision tasks including object de-

tection [4], depth estimation [5], optical flow [6, 7] and ob-

ject tracking [8]. The idea of superpixels is to divide the im-

age into multiple clusters, which ideally reflect qualities such

as similar colour, and boundaries overlapping with existing

boundaries in the image.

Superpixel segmentation as a stand-alone tool decreases

computational load by reducing the number of primitives in

the image domain, while at the same time increasing dis-

criminative information [9, 10]. These factors have moti-

vated the fast development of diverse superpixel segmenta-

tion techniques starting from the pioneering work of Ren and

Malik [11] and followed by diverse approaches including the

ones reported in [9, 12, 13, 14].
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Fig. 1. Visual comparison of SLIC vs our dSLIC. (From left

to right) Input image, ground truth and outputs from SLIC and

dSLIC. Zoom-in views show output details, in which dSLIC

avoids segmenting large uniform domains (e.g. hair and bag).

In particular, the Simple Linear Iterative Clustering

(SLIC) [9] algorithm is a top reference solution, and probably

the most widely-used approach, that fulfils desirable prop-

erties such as computational tractability and good boundary

adherence. SLIC performs image segmentation into super-

pixels, building on Lloyd’s algorithm [15] for k-means clus-

tering. The general approach is an iterative scheme which

adapts the segmentation at each iteration such that the up-

dated domains consist of points which are similar, in distance

or colour, to a particular segment in the previous step.

The central observation of SLIC is that using a similarity-

metric, which includes spatial distance in the image, one can

justify a limitation on the search range for the updates. This

limit yields to a vastly improved computational performance

of SLIC when compared to traditional segmentation algo-

rithms. However, the introduction of a limited search range

also has downsides: (1) large uniform domains are segmented

into unnecessarily small superpixels and (2) in regions with

more structure, i.e. more objects, the final superpixel size

is much smaller than the search radius of SLIC; thus, many

distance calculations are actually obsolete and computational

efficiency could be further enhanced.

Motivated by the aforementioned drawbacks, in this work

we propose an extension of the SLIC algorithm which we call

dSLIC, where d stands for dynamic. Our solution allows for
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a dynamic search field in each iteration, thus allowing the

algorithm and final superpixels to better adjust to structure

which is prevalent in the image (see Fig. 1). While this is

an important part of our solution our contributions are: (1)

We propose a structure measure that allows for dynamic ad-

justment of the search range according to the density of ob-

jects/boundaries. (2) We show that our proposed distance cal-

culations allows: (i) searching, in structure-poor parts, larger

domains to connect meaningful uniform regions and (ii) re-

ducing, in structure-rich parts, the search radius to save com-

putational resources. (3) We demonstrate that injecting our

structure measure to the SLIC computation leads to a segmen-

tation closer to the ground-truth. (4) We provide evidence of

the general applicability of our solution with several datasets,

and compare against some work from the body of literature.

2. BACKGROUND− FROM LLOYD TO SLIC

In this section, we discuss the basis of our dSLIC solution,

based on the connection between the k-means clustering de-

scribed in [15] and the SLIC algorithm [9].

Consider an input image of integer width w and integer

height h as I : [w] × [h] → D, where D is the image do-

main. For our purpose, D could be [0, 1] for greyscale images

or a subset of R3 for colour images. Then, segmenting the

input I into superpixels based on k-means clustering can be

formulated as a minimisation problem in the following form:

Definition 2.1 (Segmentation in k-means clustering). Given

an image I : X → D, where X = [w] × [h] ⊂ Z
2, a seg-

mentation into superpixels is a partition {Si}ni=1 of X such

that:

1. Each Si is path-connected, with respect to the usual grid

on Z
2.

2. For each 1 ≤ i ≤ nwe haveSi = {x : d((x, I(x)), F (Si))
= min1≤j≤n d((x, I(x)), F (Sj ))}.

where d is a metric on the space X × D and F : P(X ) →
X ×D is the feature function on the set of all partitions of the

image grid.

Intuitively speaking, F represents the main features of each

cluster and d is a measure for similarity between any two

points in the space [w]× [h]×D.

A fairly traditional approach to image segmentation is k-

means clustering and in particular Lloyd’s algorithm [15].

The idea is to compute the point in X closest to the mean

(which we shall call the cluster center) of all cluster points,

as F (S) :=
[

1
|S|

∑

x∈S(x, I(x))
]

, and to update the segmen-

tation iteratively, ensuring at each step that we assign points

to the nearest cluster from the previous step. Inspired by this

concept, Achata et al. in [9] proposed the SLIC algorithm

which is a local version of the Lloyd’s algorithm.

In the setting of SLIC, a distance measure is used as: For

p1,p2 ∈ X ×D,pi = [xi, li]
T ,xi ∈ X , li ∈ D define

d(p1,p2) =

√

d2s +

(

dc

S

)2

m2 where (1)

ds(p1,p2) = ‖x1 − x2‖2, dc(p1,p2) = ‖l1 − l2‖2,

where D is Lab-space in the colour image case and just inten-

sity in the grey-scale image case, and m is a parameter which

tunes the importance of spatial as compared to Lab-distance.

The central observation exploited by SLIC is that if the spa-

tial distance between two image points (‖x1− x2‖2) is large,

then the distance d(p1,p2) is large and its calculation can be

spared in order to enhance computational efficiency. While

SLIC has demonstrated powerful results, it is more limited by

its construction. These limitations are addressed and motivate

our proposed solution.

3. STRUCTURE ADJUSTING SUPERPIXELS

In this section, we address how the failure of SLIC is related

to the modelling hypotheses, and how these failures motivate

our proposed solution, dSLIC.

Whilst SLIC provides fast and qualitative image segmen-

tation, one can observe - from the description given in the

previous section - that SLIC is restricted by its own defini-

tion. Notably, these restrictions are two-fold. Firstly, SLIC

tends to segment large uniform regions in an image with more

superpixels than are intuitively necessary. Secondly, in search

domains with many boundaries, the resulting superpixels size

is smaller than SLIC’s search radius.

Proposed Solution − dSLIC. The central idea to our

approach is that the problems described above could be over-

come by dynamically adjusting the search range according to

the density of structure in a given part of the image.

The presence of boundaries and hence of non-uniform

parts in an image can be captured by the size of the discrete

gradient of the image. Particularly, if we work with greyscale

images with D = [0, 1] then |DI|will be large on edges of the

image and provide an indicator of such in the interval [0,
√
2].

For colour images, we calculate the gradient and all following

measures simply by converting to greyscale first. However,

the gradient - as local descriptor of the image - does not al-

low determining if a given point belongs, or not, to an image

part with many boundaries. Thus, we propose the following

measure of structure in the image:

f(x) = (gσ ⋆ |DI|)(x), (2)

where gσ is a Gaussian kernel of variance σ2. In practise, we

found that the following additional scaling is able to deal with

any given input image:

f(x) =

(

g20 ⋆
(

|DI| ∧ 2
255

))

(x)

maxx∈X

(

g20 ⋆
(

|DI| ∧ 2
255

))

(x)
. (3)
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Fig. 2. Samples input (a) and (b) and the corresponding f(x)
plot. (a.1) and (b.1) illustrate the effect of f(x), in which

small values are related to uniform areas while high values to

regions with rich structure.

Our function f(x) is plotted in Fig 2. From these exam-

ples, we can observe that f(x) is small in uniform regions,

such as the sky, and large in non-uniform regions such as the

trees and people. This comes from the fact that the normed

gradient provides a local indicator for existent structure and

the Gaussian convolution allows us to spread this information

across a neighbourhood. In order to rescale the search radius

appropriately we define:

g(x) := exp
(

f(x)− f
)

, (4)

where f denotes the average of f on the image grid, and pro-

pose the following dynamic distance computation:

d((x, I(x)), F (S
(t)
i )) if |x− (F (S

(t)
i ))1| ≤ 2Sg(F (S

(t)
i ));

Set d((x, I(x)), F (S
(t)
i )) =∞ o.w.;

The overall procedure of our dSLIC method - which dy-

namically adjusts the search field size according to our struc-

ture measure g - is listed in Algorithm 1.

4. EXPERIMENTAL RESULTS

In this section we describe in detail the experiments that we

conducted to evaluate our dSLIC algorithm.

Data Description. We evaluated our dSLIC algorithm us-

ing images coming from three datasets: (i) The Berkeley Seg-

mentation Dataset 500 [16], (ii) The Stanford Background

Dataset [17] and (iii) The Fashionista dataset [18, 10]. All

results presented in this section were run under the same con-

dition, and using an Intel Core i7 CPU at 3.40 GHz-64GB.

Results. We divided our evaluation scheme in two parts:

(1) The first, which is the main focus of this work, demon-

strates the advantages of our solution (dSLIC) - from both

qualitative and quantitative points of view - against the SLIC

algorithm. (2) We offer an initial insight comparison between

dSLIC and some works from the state-of-the-art. In this work,

in (1) we set m = 20 since it yields balance between unifor-

mity of shape and boundary adherence.

We started with visual evaluation of our approach com-

pared against SLIC. Upon visual inspection of the results in

Algorithm 1 Structure Adjusting Superpixels (dSLIC)

1: Take an initial segmentation {S(0)
i }ki=1

2: while E > threshold and t < T do

3: procedure DISTANCE CALCULATIONS











Compute d((x, I(x)), F (S
(t)
i ))

if |x− (F (S
(t)
i ))1| ≤ 2Sg(F (S

(t)
i ));

Set d((x, I(x)), F (S
(t)
i )) =∞ o.w.;

4: end procedure

5: Assign x to the nearest cluster at time t such

that S
(t+1)
i = {x : d((x, I(x)), F (S

(t)
i )) =

min1≤j≤n d((x, I(x)), F (S
(t)
j ))}

6: Set t← t+ 1
7: Compute residual error E.

8: end while

9: return Final segmentation {S(t−1)
i }ki=1
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Fig. 3. Plots comparing dSLIC to SLIC using two perfor-

mance evaluation metrics, undersegmentation error and seg-

mentation accuracy.

Fig. 4, we can observe that dSLIC is able to combat the prob-

lems encountered with SLIC, in that it samples larger super-

pixels into uniform regions, avoiding in this way segmenting

the input images into unnecessarily small superpixels. More

precisely, this positive effect is illustrated in the sample out-

put in Fig. 4, in which we highlight from (a) both the hair

and pants that were more properly grouped into the same su-

perpixels. SLIC in that case failed to fully segment the hair

and added avoidable segments to the pants. dSLIC was also

more successful on properly identifying the face and the back-

ground in (b) where those details were lost in the results from

SLIC. Similarly, the segmentation results of the woman in (c)

show proper grouping of the face and the sweater.

To further evaluate the results, we also offer quantitative

analysis based on two well-used metrics for superpixels eval-

uation. The first metric is undersegmentation error which

measure conformity to the true boundaries. The second met-

ric is the achievable segmentation accuracy (ASA) which is

a performance upperbound measure that gives higher achiev-
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Fig. 4. Superpixel segmentation examples. From left to right: input image, ground truth (GT), SLIC and our dSLIC outputs

from four sample images. Visual assessment shows that the proposed algorithm performs better than SLIC as it respects object

boundaries and tends to divide an image into uniform regions (see yellow arrows).

INPUT GT QS [12] TPS [14] SLIC [9] dSLIC

(a)

(b)

(c)

(d)

(e)

Fig. 5. Superpixel segmentation examples. From left to right:

input image, ground truth and three approaches from the body

of literature [9, 12, 14]. See text for discussion.

able accuracy when superpixels are utilised as units for ob-

ject segmentation. These performance metrics are plotted

against the number of superpixels for both SLIC and dSLIC

approaches, which were obtained from segmented 15% of

randomly selected images of all datasets.

The plot on the left side of Fig. 3 shows the undersegmen-

tation error curves of both approaches where we can observe

that the proposed algorithm outperforms SLIC at all the su-

perpixel counts and reduces the error rate by more than 20%.

Similarly, the ASA curves - that appear on the right side of

Fig. 3 - show that dSLIC yields a better achievable segmenta-

tion upperbound at all the superpixel counts. With dSLIC, the

ASA is 95% with 200 superpixels where the same accuracy

can only be achieved with 1000 superpixels for SLIC. This

improvement comes at a negligible cost in runtime (∼ 2%).

While the main aim of this work is to offer evidence about

the performance improvement of our approach over SLIC, we

also offer an insight comparison of our solution against some

work from the state of the art, particularly [12, 14]. All re-

sults were adapted to the same conditions for fair compari-

son. Fig. 5 shows selected images comparing the results of

each of the compared approaches. Visual assessment of the

figure shows that our solution was able to identify shapes’

details and merge regions with uniform domain. Clear exam-

ples can be seen in the segmentation of the faces and the moon

structure in (a) and the face and wooden branch in (b) and (c)

respectively. Our algorithm was also able to properly unify

small details in the image such as the duck’s beak and the

house structure in examples (d) and (e). We also noticed that

among the compared algorithms, SLIC and dSLIC demanded

the lowest computational load.

5. CONCLUSIONS

We have considered the problem of superpixel image segmen-

tation, which is of theoretical interest and practical impor-

tance. We build on the state-of-the-art algorithm SLIC [9] by

introducing a dynamic search range based on a structure mea-

sure. This helps avoid both unnecessary oversegmentation of

uniform areas, and repeatedly searching object-dense areas.

Numerical experiments showed evidence that our proposed

algorithm, dSLIC, outperforms the SLIC solution in terms of

undersegmentation error (20%) and achievable accuracy. Vi-

sual assessment of the results confirms that dSLIC provides

more meaningful superpixels in the same linear runtime. This

work offers an initial proof of concept of our method dSLIC.

Future work may include an extensive comparison and analy-

sis against more works from the state-of-the-art.

4



6. REFERENCES

[1] Ngo, Tran-Thanh and Collet, Christophe and Mazet,

Vincent. Automatic rectangular building detection from

VHR aerial imagery using shadow and image segmenta-

tion. IEEE International Conference on Image Process-

ing (ICIP). pp. 1483–1487, 2015.

[2] Huang, Xinyu and Li, Chen and Shen, Minmin and Shi-

rahama, Kimiaki and Nyffeler, Johanna and Leist, Mar-

cel and Grzegorzek, Marcin and Deussen, Oliver. Stem

cell microscopic image segmentation using supervised

normalized cuts. IEEE International Conference on Im-

age Processing (ICIP), pp. 4140–4144, 2016.

[3] Shen, Haocheng and Zhang, Jianguo and Zheng, Weishi.

Efficient symmetry-driven fully convolutional network

for multimodal brain tumor segmentation. IEEE Inter-

national Conference on Image Processing (ICIP), 2017.

[4] Yan, Junjie and Yu, Yinan and Zhu, Xiangyu and Lei,

Zhen and Li, Stan Z. Object detection by labeling super-

pixels. IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pp. 5107–5116, 2015.

[5] Liu, Fayao and Shen, Chunhua and Lin, Guosheng.

Deep convolutional neural fields for depth estimation

from a single image. IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), pp. 5162–5170,

2015.

[6] Lu, Jiangbo and Yang, Hongsheng and Min, Dongbo

and Do, Minh N. Patch match filter: Efficient edge-

aware filtering meets randomized search for fast corre-

spondence field estimation. IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pp.

1854–1861, 2013.

[7] Menze, Moritz and Geiger, Andreas. Object scene flow

for autonomous vehicles. IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pp.3061–

3070, 2015.

[8] Wang, Shu and Lu, Huchuan and Yang, Fan and Yang,

Ming-Hsuan. Superpixel tracking. IEEE International

Conference on Computer Vision (ICCV), pp. 1323–

1330, 2015.

[9] Achanta, Radhakrishna and Shaji, Appu and Smith,

Kevin and Lucchi, Aurelien and Fua, Pascal and

Süsstrunk, Sabine. SLIC superpixels compared to state-

of-the-art superpixel methods. IEEE Transactions on

Pattern Analysis and Machine Intelligence (PAMI),

vol.34, pp. 2274–2282, 2012.

[10] Stutz, David and Hermans, Alexander and Leibe, Bas-

tian. Superpixels: An evaluation of the state-of-the-art.

Computer Vision and Image Understanding, 2017.

[11] Ren, Xiaofeng and Malik, Jitendra. Learning a classifi-

cation model for segmentation. IEEE International Con-

ference on Computer Vision (ICCV), 2003.

[12] Vedaldi, Andrea and Soatto, Stefano. Quick shift and

kernel methods for mode seeking. European Conference

on Computer Vision (ECCV), pp. 705–718, 2008.

[13] Van den Bergh, Michael and Boix, Xavier and Roig,

Gemma and de Capitani, Benjamin and Van Gool,

Luc. SEEDS: Superpixels extracted via energy-driven

sampling. European Conference on Computer Vision

(ECCV), pp. 13–26, 2012.

[14] Tang, Dai and Fu, Huazhu and Cao, Xiaochun. Topol-

ogy preserved regular superpixel IEEE International

Conference on Multimedia and Expo (ICME), pp. 765–

768, 2012.

[15] Lloyd, Stuart. Least squares quantization in PCM. IEEE

transactions on information theory, vol. 28, pp. 129–

137, 1982.

[16] Arbelaez, Pablo and Maire, Michael and Fowlkes, Char-

less and Malik, Jitendra. Contour detection and hierar-

chical image segmentation. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence (PAMI), vol. 33,

pp. 898–916, 2011.

[17] Gould, Stephen and Fulton, Richard and Koller,

Daphne. Decomposing a scene into geometric and se-

mantically consistent regions. IEEE International Con-

ference on Computer Vision (ICCV), pp. 1–8, 2009.

[18] Yamaguchi, Kota and Kiapour, M Hadi and Ortiz, Luis

E and Berg, Tamara L. Parsing clothing in fashion pho-

tographs. IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 3570–3577, 2012.

5


	1  Introduction
	2  Background - From Lloyd to SLIC
	3  STRUCTURE ADJUSTING SUPERPIXELS
	4  Experimental results
	5  Conclusions
	6  References

