Loading [MathJax]/extensions/MathMenu.js
Unconstrained Flood Event Detection Using Adversarial Data Augmentation | IEEE Conference Publication | IEEE Xplore

Unconstrained Flood Event Detection Using Adversarial Data Augmentation


Abstract:

Nowadays, the world faces extreme climate changes, resulting in an increase of natural disaster events and their severities. In these conditions, the necessity of disaste...Show More

Abstract:

Nowadays, the world faces extreme climate changes, resulting in an increase of natural disaster events and their severities. In these conditions, the necessity of disaster information management systems has become more imperative. Specifically, in this paper, the problem of flood event detection from images with real-world conditions is addressed. That is, the images may be taken in several conditions, including day, night, blurry, clear, foggy, rainy, different lighting conditions, etc. All these abnormal scenarios significantly reduce the performance of the learning algorithms. In addition, many existing image classification methods use datasets that usually include high-resolution images without considering real-world noise. In this paper, we propose a new image classification framework based on adversarial data augmentation and deep learning algorithms to address the aforementioned problems. We validate the performance of the flood event detection framework on a real-world noisy visual dataset collected from social networks.
Date of Conference: 22-25 September 2019
Date Added to IEEE Xplore: 26 August 2019
ISBN Information:

ISSN Information:

Conference Location: Taipei, Taiwan

Contact IEEE to Subscribe

References

References is not available for this document.