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ABSTRACT

Channel pruning, which seeks to reduce the model size by
removing redundant channels, is a popular solution for deep
networks compression. Existing channel pruning methods
usually conduct layer-wise channel selection by directly min-
imizing the reconstruction error of feature maps between the
baseline model and the pruned one. However, they ignore the
feature and semantic distributions within feature maps and
real contribution of channels to the overall performance. In
this paper, we propose a new channel pruning method by ex-
plicitly using both intermediate outputs of the baseline model
and the classification loss of the pruned model to supervise
layer-wise channel selection. Particularly, we introduce an
additional loss to encode the differences in the feature and se-
mantic distributions within feature maps between the baseline
model and the pruned one. By considering the reconstruction
error, the additional loss and the classification loss at the same
time, our approach can significantly improve the performance
of the pruned model. Comprehensive experiments on bench-
mark datasets demonstrate the effectiveness of the proposed
method.

Index Terms— deep neural networks, object classifica-
tion, model compression, channel pruning

1. INTRODUCTION

In recent years, deep convolutional neural networks (CNNs)
have been widely applied to various computer vision tasks,
e.g., image classification, object detection, action recognition,
since AlexNet [1] won the ImageNet Challenge: ILSVRC
2012 [2]. However, it is very hard to deploy these deep mod-
els on resource-constrained devices including mobile robots,
unmanned aerial vehicles, smartphones, etc. due to their high
storage and computational cost.

In order to make CNNs available on resource-constrained
devices, many model compression and acceleration meth-
ods have been presented including channel pruning [3, 4, 5],
network quantization[6, 7, 8] and low-rank approximation
[9, 10]. The method proposed in this paper falls into the
category of channel pruning. Different from simply mak-
ing sparse connections, channel pruning reduces the model

size by directly removing redundant channels. In contrast,
pruning the entire channel can achieve fast inference with-
out special software or hardware implementation. To prune
redundant channels, existing reconstruction-based methods
[3, 4, 5] usually minimize the reconstruction error of fea-
ture maps between the baseline model and the pruned one.
DCP [11] seeks to conduct channel selection by introducing
additional discrimination-aware losses. These methods suf-
fer from two aspects of limitations. First, directly matching
feature maps ignores the feature and semantic distributions
within them. Specifically, one should be encouraged to focus
more on really important channels and spatial activations of
feature maps instead of simply aligning every location. Sec-
ond, the reconstruction error of a layer or additional losses
do not always truly reflect the change of the classification
loss, which may lead to mistakenly pruning some important
channels.

In this paper, we address these problems from two as-
pects. First, the feature and semantic correlation loss is de-
fined, through which the pruned model can preserve the fea-
ture and semantic distributions within feature maps of the
baseline network. Second, we reconsider real contribution of
channels to the overall performance. To this end, the classifi-
cation loss of the pruned model is used to supervise channel
selection. Then, we conduct layer-wise channel pruning by
considering the reconstruction error, the additional loss and
the classification loss at the same time.

Our main contributions are summarized as follows. First,
we present a multi-loss-aware channel pruning method for
deep networks compression by the introduction of the feature
and semantic correlation loss and the classification loss. Sec-
ond, extensive experiments on benchmark datasets show that
the proposed method is theoretically reasonable and practi-
cally effective. On CIFAR-10, our approach outperforms the
previous state-of-the-art method by 0.55% in accuracy.

2. RELATED WORK

The basic idea of weight pruning is to prune some redun-
dant weights. Han et al. [12] proposed a conceptually simple
pruning method: weights lower than a certain threshold are
considered as low contribution ones that can be pruned, and

ar
X

iv
:1

90
2.

10
36

4v
1 

 [
cs

.C
V

] 
 2

7 
Fe

b 
20

19



Reconstruction 
Error

Feature & Semantic
Correlation Loss

Classification Loss

Final Loss+

Pruned Model

Baseline Model Feature Maps

Convolution

Max pooling

Fully connected

Softmax

After Pruning:

Before Pruning:

Fig. 1. Illustration of multi-loss-aware channel pruning. The final loss is used to supervise layer-wise channel selection.

then fine-tuning is taken for restoring the network accuracy.
However, the method needs special software or hardware im-
plementation for fast inference. In view of this issue, Struc-
tured Sparsity Learning (SSL) [13] imposed regularizations
on different levels of structures such as filters, channels or
layers. Then weights belonging to the same level of structure
would go to zero at the same time, which could be removed.
This method obtains extraordinary performance but is com-
putationally expensive and difficult to converge. Afterwards,
some inference-based channel pruning methods [4, 14] were
proposed, and they sought to do channel selection by defin-
ing different selection criteria. ThiNet [4] explicitly formu-
lated channel selection as an optimization problem, and con-
ducted channel pruning by minimizing the reconstruction er-
ror of feature maps between the baseline model and pruned
one. DCP [11] aimed at selecting the most discriminative
channels for each layer by considering both the reconstruc-
tion error and the discrimination-aware loss. However, these
methods ignore the feature and semantic distributions within
feature maps and real contribution of channels to the overall
performance.

3. OUR METHOD

For better description of the proposed method, some notations
are given first. Considering a layer of the CNN model, X
represents the input tensor, W denotes the convolution fil-
ter and ⊗ represents the convolution operation. We further
use F ∈ RM×HZ to denote output feature maps of the layer.
Here, M , H , Z represents the number of output channels, the
height and the width of the feature maps respectively.

3.1. Motivation

Existing methods [3, 4, 11] conduct channel pruning by min-
imizing the reconstruction error of a layer, which can be de-

fined as the Euclidean distance of feature maps between the
original model and the pruned one:

Lr =
1

2T
||X ⊗W −X ⊗WP ||22 (1)

where T =M×H×Z,P denotes the index set of the selected
channels,WP represents the submatrix indexed byP . Jiang et
al. [5] explore the correlation between the layer-wise recon-
struction error and the classification loss, and they demon-
strate these two variables show positive correlation. How-
ever, the correlation coefficient varies with different layers
and some layers show low correlation. Consequently, simply
minimizing the reconstruction error may mistakenly remove
some important channels, even if they are very sensitive to
the classification loss. Moreover, assuming each channel of
F corresponds to a type of feature and each spatial activation
encodes a type of semantic information, the feature and se-
mantic distributions reflect which channels and spatial areas a
CNN model focuses on. However, directly matching feature
maps is not a good choice to preserve the feature and semantic
distributions of the baseline model.

These limitations of existing methods inspire us to define
a new loss: the feature and semantic correlation loss. The
pruned model can preserve the feature and semantic distribu-
tions within feature maps of the baseline network using this
loss. Meanwhile, we will explicitly use the classification loss
to supervise layer-wise channel selection.

3.2. Formulation

To transfer rich semantic information of the baseline model,
one can align the semantic distribution of two feature maps
[15, 16]. In this paper, we consider aligning both the feature
and semantic distributions by introducing the feature and se-
mantic correlation loss. Here, the loss can be defined as the



Algorithm 1 The proposed method
Require: {W l : 0 < l < L}: parameters of the pre-trained

model, the training set {xi, yi}, the pruning rate.
Ensure: {W l

P : 0 < l < L}: parameters of the pruned
model.

1: Initialize W l
P with W l for ∀1 ≤ l ≤ L

2: for l = 1, 2, · · · , L do
3: Construct the final loss L shown as in Fig. 1
4: Perform channel selection for layer l by Eq 5
5: Update W l

P w.r.t. the selected channels by Eq 6
6: end for
7: Fine-tune the pruned model

square error of two Gram matrices:

Ls =
1

4N2M2
(||Gf −Gf

P ||
2
2 + ||Gs −Gs

P ||22) (2)

whereN = H×Z, the Gram matrixGf ∈ RM×M andGs ∈
RN×N encode the feature and semantic correlation for a layer
of the baseline model respectively. Similarly, Gf

P and Gs
P are

Gram matrices corresponding to the pruned model. Gf ∈
RM×M is computed by the inner product between different
vectorized features. Gs ∈ RN×N is computed by the inner
product between different vectorized spatial activations cross
channels:

Gf
ij =

N∑
k=1

FikFjk, G
s
i′ j′

=

M∑
k′=1

Fk′ i′Fk′ j′ (3)

To ensure important channels being kept, we explicitly
use the classification loss to supervise layer-wise channel se-
lection. By considering the reconstruction error, the feature
and semantic correlation loss and the classification loss at the
same time, the problem of channel pruning can be formulated
to minimize the following joint loss function:

min
WP

L(WP) = Lr(WP) + αLs(WP) + βLc(WP)

s.t. ||P||0 ≤ K
(4)

where α and β are two positive coefficients balancing the reg-
ularization terms, Lc is the classification loss and K is the
number of channels to be selected.

3.3. Optimization Algorithm

It is a combinatorial optimization problem to choose a subset
of channels according to Eq. 4. Directly searching compet-
itive network structures in the whole solution space is NP-
hard. Existing methods [4, 11, 5] seek to do channel selection
with greedy algorithm by only considering the weight magni-
tude or the gradient of Eq. 4 w.r.t. the channel. In this paper,
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Fig. 2. The evolution curves of different losses over epochs
on CIFAR-100.

we take both of them into consideration. To be specific, the
sensitivity of the k-th channel is defined as:

δk =

H∑
i=1

W∑
j=1

|| L
Wk,i,j

Wk,i,j ||22 (5)

which is the square sum of weights of the k-th channel mul-
tiplying gradients of Eq. 4 w.r.t. the channel. Then we retain
the channels with the i largest sensitivity and remove others.
After this, Eq. 4 w.r.t. the selected channels is further opti-
mized according to stochastic gradient descent (SGD). WP is
updated by:

WP =WP − η
∂L
∂WP

(6)

where η represents the learning rate. After updating WP , the
channel pruning of a single layer is finished. The pruning
process of the whole model is described in Algorithm 1.

4. EXPERIMENTS

In this section, our approach is evaluated on CIFAR-10 [19]
and CIFAR-100 [19]. The proposed method is compared with
several state-of-the-art methods including ThiNet [4], CP [3]
and DCP [11]. Our approach is implemented using the Py-
Torch [20] framework. For the experiments on CIFAR-10 and
CIFAR-100, we adopt the same experiments setting as in [11].
Besides, α and β (Eq. 4) are set to 0.001 and 1 respectively.

4.1. Overall Comparison Results

To verify the effectiveness of the proposed approach, we
conduct comparison experiments with several state-of-the-art
methods on VGGNet and ResNet-56 . Table 1 summarizes
overall comparison results on CIFAR-10. It can be observed
that the accuracy gap between our baseline model and the
comparison reference model is very small. For VGGNet,



Table 1. Overall comparison results for VGGNet and ResNet-56 on CIFAR-10.
Models Methods Baseline (%) Err. Gap (%) #Param. #Param. ↓ #FLOPs #FLOPs ↓

VGG-16

CP [3]

6.01

+0.32

7.70M 1.92× 155.80M 2.00×ThiNet [4] +0.14
Sliming [17] +0.19

DCP [11] -0.17
Ours 6.08 -0.13 5.50M 2.26× 140.30M 2.23×

ResNet-56

CP [3]

6.20

+1.00

0.42M 1.97× 63.20M 1.99×
ThiNet [4] +0.82
WM [18] +0.56
DCP [11] +0.31

Ours 6.26 -0.24

Table 2. The comparison results on ResNet-56 with different
losses on CIFAR-10.

Methods Training Err. (%) Test Err. (%)
Lr 3.75 9.74
Ls 6.53 10.95
Lc 0.85 8.35

Lr + Ls 1.31 8.27
Lr + Lc 0.73 8.14
Ls + Lc 1.03 8.20

Lr + Ls + Lc 1.09 8.00

the proposed approach has a higher speedup and compres-
sion rate than other methods with the same accuracy drop.
For ResNet-56, our approach achieves the best performance
compared with previous state-of-the-art methods. With a
compression rate of 1.97× and a speedup of 1.99×, the pro-
posed method outperforms the DCP by 0.55% in accuracy
drop. Moreover, our pruned ResNet-56 even outperforms the
baseline model by 0.24% in accuracy.

4.2. Analysis of the Proposed Approach

To study effects of different losses, we prune 30% channels of
ResNet-56 on CIFAR-10 with different losses without fine-
tuning. As shown in Table 2, the test error of the pruned
model gets an immediate decline when introducing the fea-
ture and semantic correlation loss or the classification loss.
It’s worth noting that the pruned model obtains the best per-
formance with three losses together. This demonstrates multi-
loss fusion is an effective strategy for channel pruning and
three losses can complement each other in some aspects.

Going one step further, we verify the convergence of our
method. The loss function in Eq. 4 is optimized using SGD
when pruning a single layer. Fig. 2 shows three losses (Eq. 4)
change over epochs for the first twelve layers of VGGNet on
CIFAR-100. It can be found that models with different losses
can converge to a minor error after 50 epochs. At Conv5-
1 and Conv5-2, curves of three losses do not drop after 10

Table 3. The comparison results on ResNet-18 and ResNet-
34 with different pruning rate on CIFAR-100.

Methods Pruned rate (%) Test Err. (%)

ResNet-18
(Baseline 21.89%)

30 24.39
50 24.91
70 25.15

ResNet-34
(Baseline 21.16%)

30 21.87
50 22.41
70 22.89

epochs. The above results demonstrate the proposed method
has a fast rate of convergence.

To further explore limits of the proposed approach, we
prune ResNet-18 and ResNet-34 with different pruning rate
on CIFAR-100. Experimental results in Table 3 show that the
pruned model gets an immediate accuracy drop with increase
of pruning rate. Besides, ResNet-18 is more sensitive to chan-
nel pruning than ResNet-34 due to its fewer parameters.

5. CONCLUSION

In this paper, a multi-loss-aware channel pruning method
is presented for deep networks compression. The proposed
approach achieves the state-of-the-art performance on bench-
mark datasets by considering the reconstruction error, the
classification loss and the feature and semantic correlation at
the same time. As for future works, we will combine existing
pruning strategies with other network compression methods
to explore more compact models with less accuracy drop.
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