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ABSTRACT

Networked video applications, e.g., video conferencing, of-
ten suffer from poor visual quality due to unexpected net-
work fluctuation and limited bandwidth. In this paper, we
have developed a Quality Enhancement Network (QENet) to
reduce the video compression artifacts, leveraging the spa-
tial and temporal priors generated by respective multi-scale
convolutions spatially and warped temporal predictions in a
recurrent fashion temporally. We have integrated this QENet
as a standard-alone post-processing subsystem to the High-
Efficiency Video Coding (HEVC) compliant decoder. Exper-
imental results show that our QENet demonstrates the state-
of-the-art performance against default in-loop filters in HEVC
and other deep learning based methods with noticeable objec-
tive gains in Peak-Signal-to-Noise Ratio (PSNR) and subjec-
tive gains visually.

Index Terms— Video quality enhancement, multi-scale
spatial priors, multi-frame temporal priors, post-processing,
HEVC

1. INTRODUCTION

Networked video applications prevail in our daily life. High-
efficiency video compression is demanded to ensure the
smooth network delivery and guarantee the satisfactory Qual-
ity of Experience (QoE) for end users. However, lossy video
compression is always accompanied by undesired artifacts,
such as blocky, motion blurring and ringing. In-loop filters
(e.g., deblocking, and/or Sample Adaptive Offset (SAO)) are
incorporated in popular HEVC [4] standard to reduce the
compression artifacts for quality improvement.

On the other hand, deep Convolutional Neural Networks
(CNNs) have been applied to alleviate the quantization in-
duced compression artifacts, and demonstrated noticeable
performance enhancements. For example, Park and Kim [5]
used a CNN based approach to replace SAO in HEVC. Dong
et al. [1] built an Artifacts Reduction CNN (ARCNN) [6]
to reduce artifacts introduced by JPEG compression. Dai
et al. [7] proposed a Variable-size Residual learning CNN
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Fig. 1. Illustration of multi-frame QENet for a low-delay
video application with temporal priors captured recurrently.

(VRCNN) to further improve the quality of HEVC com-
pressed videos. In the meantime, Nah et al. [8] and Tao et
al. [9] adopted deep multi-scale CNNs that utilize the local
and non-local information within the single frame for im-
age deblurring. Zhang et al. [2] designed Denoising CNNs
(DnCNNs) with very deep architecture for image denoising.

Temporal correlations or priors can be used for video re-
lated tasks, e.g., motion representation, frame interpolation,
and video denoising. For example, Long Short-Term Memory
(LSTM) [10] based algorithms were proposed to handle tem-
poral processing tasks by transmitting intermediate parame-
ters iteratively. Dosovitskiy et al. [11] and Ilg et al. [12]
proposed an optical flow network to predict the motion vector
between consecutive frames via Deep Neural Network (DNN)
rather than traditional block based motion search. Niklaus et
al. [13] utilized learned adaptive convolutions to capture the
motion accurately for better frame warping. With these flow
based motion representations, temporal priors can be captured
from previously reconstructed multiple frames to further the
artifacts reduction (e.g., motion deblurring) for a single-frame
quality enhancement approaches [1]. Lu et al. [3] introduced
a Deep Kalman Filtering Network (DKFN) for video com-
pression artifact reduction.

In this work, we first design an effective quality enhance-
ment network with scale-wise convolutions to capture the
multi-scale spatial priors within current frame for single-
frame compression artifacts reduction. Such multi-scale con-
volutions coincides with the variable-size Coding Unit (CU)

ar
X

iv
:1

90
5.

01
02

5v
1 

 [
ee

ss
.I

V
] 

 3
 M

ay
 2

01
9



In
p

u
t

C
o

n
v

3
×

3

S
tr

id
e

=
4

C
o

n
v

5
×

5

S
tr

id
e

=
2

C
o

n
v

7
×

7

S
tr

id
e

=
1

R
e

s
B

lo
c

k

U
p

S
a

m
p

le

C
a

t

R
e

s
B

lo
c

k

U
p

S
a

m
p

le

C
a

t

R
e

s
B

lo
c

k

O
u

tp
u

t4 Residual Blocks

4 Residual Blocks

4 Residual Blocks

Fig. 2. Illustration of scale-wise convolutions to capture multi-scale spatial priors within current frame.

idea utilized in HEVC to well exploit the regional content
characteristics (i.e., rich texture area with small-size convo-
lution and CU, and stationary background with large-size
convolution and CU). In addition, we also explore the tempo-
ral relationships among consecutive frames to further improve
the quality. Such temporal priors are generated in a recurrent
way from previously reconstructed frames via optical flow
estimation. We have trained our QENet in an end-to-end
fashion for HEVC compliant compressed video enhancement
as a standard-alone post-processing module. Experimental
results show that our multi-frame QENet demonstrates the
state-of-the-art performance against default filters in HEVC
with about 1.8 dB PSNR gain, ARCNN [1] with about 1 dB
PSNR gain, DnCNN [2] with about 0.4 dB PSNR gain and
DKFN [3] with about 0.24 dB PSNR gain, respectively, for
a low-delay application with intermediate bit rate (e.g, com-
pressed using quantization parameter QP 32). Similar gains
are kept at QP 37 (i.e., low bit rate scenario).

2. LEARNED QUALITY ENHANCEMENTS
NETWORKS FOR COMPRESSED VIDEO

Figure 1 presents our proposed multi-frame QENet for video
quality enhancement. We use HEVC compliant IPPP struc-
ture for a low-delay scenario representation. Our QENet
works recurrently from the first I frame Xd

t=0 to the upcom-
ing P frames Xd

t , t = 1, 2, 3, . . . consecutively, to produce
frames Xe

t with enhanced quality.

2.1. Single-Frame (SF) QENet

Since there is no temporal priors for I frame, our Single-
Frame (SF) QENet only enhances it using multi-scale spatial
priors, as shown in Fig. 2 with only current frame as input,
i.e.,

Xe
t = QENet

(
Xd

t

)
, t = 0. (1)

We utilize scale-wise convolutions to capture the multi-scale
priors spatially in current frame. Different from [8] and [9],

the input frame of our SF-QENet is resized into three scales
respectively using convolutions by setting stride at 1, 2 and 4
instead of applying typical down scaling filters (e.g., bilinear,
bicubic). With such implementation, local and non-local spa-
tial information of current frame can be extracted and fused
effectively. Three different convolutional kernel sizes are uti-
lized accordingly, e.g., 3×3 convolution for 1/16 down scaled
size of the original content, 5 × 5 for 1/4 of the original size
and 7× 7 for the original scale. This helps to extract features
from different scales. Four Residual Blocks (ResBlock) [14]
are applied at each scale for acquisition of high-dimensional
features with the deconvolution upsampling layer connected
afterwards. The number of channels is basically 64 of each
convolutional layer. Under such connection architecture, spa-
tial information of each scale can be fused together closely
for final quality restoration and enhancement.

2.2. Multi-Frame (MF) QENet

For upcoming decoded P frames, optical flow f(t−1)→t be-
tween consecutive decoded frames, i.e., Xd

t−1 and Xd
t , t >

1 , is generated via dedicated Flow estimation Network
(FlowNet) F [12]. Flows will then be used to warp previ-
ously enhanced frames (e.g., Xe

t−1) for intermediate frame
prediction Xp

t . Together with decoded Xd
t , we could finally

restore the Xe
t , i.e.,

f(t−1)→t = F
(
Xd

t−1,X
d
t

)
, (2)

Xp
t = WARP

(
f(t−1)→t,X

e
t−1
)
, (3)

Xe
t = QENet

(
CAT

(
Xp

t ,X
d
t

))
, t > 0. (4)

We modify the FlowNetS proposed in [11] as our optical
flow network by replacing the bilinear upsampling with the
pixel shuffle [15] upsampling. The U-net [16] architecture
is adopted as the motion estimation network with six scales
which is very effective for accurate motion capture. Batch
normalization layers are necessary after each convolutional
layer for such estimation network which may not be suitable
for restoration networks however. Deconvolution layers are



Table 1. Averaged (PSNR (dB), SSIM) using Vimeo Test Sequences
QP HEVC HEVC-LF ARCNN DnCNN DKFN SF-QENet MF-QENet
32 (33.87, 0.946) (34.18, 0.950) (35.08, 0.957) (35.58, 0.961) (35.81, 0.962) (35.76, 0.962) (36.01, 0.964)
37 (31.64, 0.917) (31.98, 0.923) (32.68, 0.933) (33.01, 0.936) (33.23, 0.939) (33.28, 0.940) (33.54, 0.944)

adopted to upsample the estimated flow which is fused to-
gether with feature maps of the input in the same scale to re-
construct the larger scale as in [11]. The final flow records the
motion vectors of the two consecutive frames for subsequent
warping with Xe

t−1. Note that the FlowNetS may not be the
best optical flow network but it is easier for training with less
computational complexity.

In contrast to SF-QENet in Eq. (1) with only current frame
as input, our MF-QENet shown in Eq. (4) takes inputs from
both Xp

t and Xd
t that are concatenated with temporal priors

embedded recurrently. Note that QENet used in either (1)
and (4) also captures the multi-scale spatial priors for quality
enhancements.

2.3. Loss Function for End-to-End Learning

We use two loss functions to train our model. The L2 loss
Le is applied in QENet as illustrated in Fig. 1 and is back
propagated through both QENet and FlowNet [12]:

Le =
1

n

n∑
t=1

|Xe
t −Xorg

t |
2
, (5)

with Xe
t and Xorg

t indicating the enhanced frame and original
frame at t. To calculate the optical flow more precisely, we
add another L1 norm Lw between the estimated frame Xp

t

warped from the previous restored frame via Eq.(3) and its
corresponding decoded frame Xd

t :

Lw =

n∑
t=1

∣∣Xp
t −Xd

t

∣∣ (6)

The total loss used for end-to-end training is L = Le + Lw.

3. EXPERIMENTAL STUDIES

Our experiments were performed on a desktop with an i7-
7700K CPU and a NVIDIA Quadro P5000 GPU. PyTorch
[17] platform was chosen to implement the proposed model.

3.1. Dataset

To evaluate the performance of our proposed model, we chose
the Vimeo-90K [18] dataset which was built recently for dif-
ferent video processing tasks. A total of 4278 videos with
89800 independent clips at resolution of 448 × 256 were in-
cluded. Among them, 64612 clips were used for training and
7824 clips for evaluation as the same as in [18]. We cropped

the frames into the size of 256 × 256 randomly every time
when the model read data during training to avoid the over-
flow of the memory.

3.2. Model Training

Our architecture is fully end-to-end trainable without requir-
ing any component-wise pre-training. We train the model us-
ing the Adam optimizer [19] with β1 = 0.9, β2 = 0.999 and
ε = 10−8. The learning rate is 10−4 initially, which is divided
by 10 after each 20 epochs. The batch size is 4. Each batch is
a set of 4 consecutive video frames, i.e., one I frame and three
P frames.

We will not allow the loss Le back propagated to I frame
to mimic the random access feature provided by the HEVC
in this work. Thus, we use pre-trained SF QENet for each
I frame. Additionally, we only use the nearest frame in de-
coding order as the reference for back-propagation to update
model iteratively. We firstly train our QENet on the dataset
with QP 32 and utilize the training result as the pre-trained
model to fine tune the model on the dataset with QP 37.

3.3. Performance Comparison

To demonstrate the effectiveness of our proposed approach,
we compare it with several typical artifact reduction methods
regarding both single image and multi-frame sequences, i.e.,
ARCNN [6], DnCNN [2], DKFN [3] and default in-loop fil-
ters used in HEVC.

We have used well-known FFmpeg (https://www.
ffmpeg.org/) with x265 (https://x265.org) en-
abled to generate HEVC compliant bitstreams. Encoding
parameters are kept as default, but with specific IPPP struc-
ture for low-delay scenario, and in-loop filters turned off
(e.g., deblocking and SAO). This is referred to as the cat-
egory “HEVC” that used for artifacts reduction efficiency
comparison. Additionally, we provide another set of sim-
ulations with in-loop filters enabled and other parameters
kept as the same, which is noted as category “HEVC-LF”.
Such “HEVC-LF” versus “HEVC” could be used to tell the
efficiency introduced by the default in-loop filters in HEVC.

For ARCNN [6] and DnCNN [2], we use the codes pro-
vided by the authors and train the models on the Vimeo train-
ing dataset. For DKFN [3], we directly cite their results pro-
vided in [3]. Vimeo evaluation videos are used to measure the
efficiency of each methodology.

For fairness, we follow [3] and evaluate the 3rd frame of
each clip in the Vimeo dataset in terms of PSNR and Struc-

https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://x265.org


(27.75 / 0.923) (27.96 / 0.929) (30.17 / 0.942) (31.99 / 0.959)

Groud Truth HEVC HEVC-LF ARCNN MFE(Ours)

(26.70 / 0.904) (26.97 / 0.910) (29.19 / 0.933) (31.64 / 0.953)

(30.25 / 0.842) (30.61 / 0.851) (30.65 / 0.854) (31.57 / 0.871)

Fig. 3. Illustration of quantitative (PSNR/SSIM) and visual comparison of different methods for HEVC quality enhancement
on the Vimeo dataset at QP=37.

tural SIMilarity (SSIM) [20]. Results are averaged for all eva-
lution clips. The quantitative results are reported in Table 1.
As seen, our proposed multi-frame approach, MF-QENet,
presents the state-of-the-art performance, outperforming all
existing models used in comparison, objectively. For QP 37,
More than 1.5 dB PSNR gain is recorded for our MF-QENet
over HEVC-LF; Even for DKFN, > 0.2 dB PSNR gain is
captured. Similar gains are kept for QP 32. It is also observed
that our single-frame approach, i.e., all the frames in the video
are enhanced by just SF-QENet, exhibits close efficiency as
the most recent multi-frame DKFN in [3].

Additionally, we have prepared visual comparison with
HEVC-LF and ARCNN [1] to further evident the efficiency
of our MF-QENet. As shown in Fig. 3, that artifacts caused
by HEVC compression are clearly removed by our QENet,
offering the superior subjective quality with smooth recon-
struction, but noticeable blockiness are still kept even with
other implementations.

4. CONCLUDING REMARKS

We propose an end-to-end trainable frame-recurrent qual-
ity enhancement framework as a standalone post-processing
module for HEVC compliant low-delay compressed video
applications. Three scale-wise convolutions are used in cur-
rent frame to capture the multi-scale priors spatially and fused
together to improve the spatial quality. In the meantime, tem-
poral priors are introduced using predicted samples that are
warped using extracted flows between consecutive decoded
frames and previously enhanced frame, in a recurrent way.
As demonstrated in a public Vimeo dataset, our method has
provided the state-of-the-art efficiency on artifacts reduction,
against those popular and existing literatures, both objectively
and subjectively.

The size of convolutions, as well as temporal priors in
both forward and backward directions (e.g., B pictures) are
our primary focuses for next step.
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