Abstract:
Fine-grained temporal human action segmentation in untrimmed videos is receiving increasing attention due to its extensive applications in surveillance, robotics, and bey...Show MoreMetadata
Abstract:
Fine-grained temporal human action segmentation in untrimmed videos is receiving increasing attention due to its extensive applications in surveillance, robotics, and beyond. It is crucial for an action segmentation system to be robust to the temporal scale of different actions since in practical applications the duration of an action can vary from less than a second to tens of minutes. In this paper, we introduce a novel atrous temporal convolutional network (AT-Net), which explicitly generates multiscale video contextual representations by utilizing atrous temporal pyramid pooling (ATPP) and has an architecture of encoder-decoder fully convolutional network. In the decoding stage, AT-Net combines multiscale contextual features with low-level local features to generate high-quality action segmentation results. Experiments on the 50 Salads, GTEA and JIGSAWS benchmarks demonstrate that AT-Net achieves improvement over the state of the art.
Date of Conference: 22-25 September 2019
Date Added to IEEE Xplore: 26 August 2019
ISBN Information: