
LEARNED IMAGE COMPRESSION WITH SOFT BIT-BASED RATE-DISTORTION
OPTIMIZATION

David Alexandre Chih-Peng Chang Wen-Hsiao Peng Hsueh-Ming Hang

National Chiao Tung University, Taiwan

ABSTRACT

This paper introduces the notion of soft bits to address the
rate-distortion optimization for learning-based image com-
pression. Recent methods for such compression train an au-
toencoder end-to-end with an objective to strike a balance be-
tween distortion and rate. They are faced with the zero gradi-
ent issue due to quantization and the difficulty of estimating
the rate accurately. Inspired by soft quantization, we repre-
sent quantization indices of feature maps with differentiable
soft bits. This allows us to couple tightly the rate estima-
tion with context-adaptive binary arithmetic coding. It also
provides a differentiable distortion objective function. Exper-
imental results show that our approach achieves the state-of-
the-art compression performance among the learning-based
schemes in terms of MS-SSIM and PSNR.

Index Terms— Autoencoder, Deep Learning, Image
Compression, Soft Bits

1. INTRODUCTION

Learning-based image compression has recently attracted lots
of attention due to the renaissance of deep learning. Unlike
the traditional methods, the learning-based schemes can be
adapted to any differentiable objective, opening up many op-
timization possibilities. For example, Li et al. [1] propose
a content-weighted image compression model that performs
region-adaptive compression via a learnable importance map.

Most learning-based methods[1, 2, 3, 4, 5, 6, 7, 8] rely
on training an autoencoder end-to-end with the aim of strik-
ing a good balance between distortion and rate losses. Two
challenges arise. First, the quantization process for lossy fea-
ture map compression causes zero gradients during the back-
propagation process. Second, the rate loss is often painful to
estimate accurately, as it is highly coupled with entropy cod-
ing, the operation of which is generally not differentiable.

Several prior arts are proposed to address these issues.
Li et al. [1] overcome the zero gradients by a straight-
through mechanism, which simply considers the quantizer
to be an identity function during the back-propagation pro-
cess. Agustsson et al. [5] and Mentzer et al. [3] introduce
a non-uniform soft quantizer with a smooth mapping func-
tion as a surrogate of the hard quantizer. Ballé et al. [6, 7]

and Theis et al. [8] adopt an additive noise model for the
quantizer.

In comparison with the quantization issue, the rate esti-
mation is even more challenging. Li et al. [1] use the sum
of importance map features as a rough estimate of the rate.
Theis et al. [8] estimate the rate from the upper-bound of non-
differentiable number of bits. For better estimation, Ballé
et al. [6, 7] and Minnen et al. [4] compute the differential
entropy of the quantizer output based on the additive noise
model. To bind the rate estimation tightly to the actual en-
tropy coding, Mentzer et al. [3] use the context probability
model implemented by PixelRNN [9] to compute the self-
information of each coding symbol. Their scheme is, how-
ever, complicated due to the use of PixelRNN [9] and the
non-binary arithmetic coding.

In this paper, we propose a learned image compression
system with soft-bit-based rate-distortion optimization. It
has the striking feature of combining effective coding tools
from modern image codecs (e.g., uniform quantization, bi-
nary bitplane coding with on-the-fly probability updating,
and simple context models) with the strong suit of deep learn-
ing (e.g., non-linear autoencoder). Moreover, we introduce
the notion of soft bits to represent quantization indices of
feature samples so that both rate and distortion losses can
be estimated accurately in a differentiable manner. Exper-
imental results show that our method achieves the state-of-
the-art rate-distortion performance among the learning-based
schemes.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the proposed method. Section 3 details the
training procedure. Section 4 presents the experimental re-
sults. Section 5 concludes this work.

2. PROPOSED METHOD

This section details the framework of our image compression
system, including the overall architecture, the operation of
each component, and the modeling of compression rate and
distortion for end-to-end training. Notation-wise, we use a
bold letter (e.g., x) to refer collectively to a high-dimensional
tensor and a Roman letter (e.g., x) to denote its element in
some order.

ar
X

iv
:1

90
5.

00
19

0v
1

 [
ee

ss
.I

V
]

 1
 M

ay
 2

01
9

x Encoder θe Q

SB Conv.

CABIC

Rate Estimator θr

LD(x, x̂)

Bitstream CABID IQ

Inv. SB Conv.

Decoder θd x̂
f q q f̂

q̃

Fig. 1: The architecture of the proposed image compression model.

2.1. Overall Architecture

Fig. 1 illustrates our proposed framework. There are two data
paths, one for operating the model in the test mode (that is,
for putting it into use in practice) and the other for its training
(i.e., training mode).

The data path in the test mode, as indicated by the solid
arrow lines, begins with encoding an image x ∈ RW×H×3

of size W × H in 4:4:4 YUV format through a convolu-
tional encoder E(x; θe) into a compact set of feature maps
f ∈ RW/8×H/8×C , of which each feature sample f ∈ (0, 1)
is a real number. For lossy compression, f is uniformly quan-
tized by a b-bit, power-of-two quantizer Q, leading to a fixed-
point binary representation q = bf/2−bc, where 2−b is the
quantization step size. That is, the quantization (output) in-
dex q is the first b significant bits of f in its binary repre-
sentation (e.g., q = 1100 for f = 0.81, b = 4). Like most
image compression systems, either learning-based or conven-
tional, the quantization indices q are compacted further by
lossless arithmetic coding. Motivated by JPEG2000 [10], we
arrange q as bitplanes and perform context-adaptive bit-plane
encoding/decoding (CABIC/CABID), of which we will dis-
cuss more in the following sections. To reconstruct the input
x approximately, the feature sample is first recovered via in-
verse quantization (IQ) f̂ = q/2b, followed by convolutional
decoding x̂ = D(f̂ ; θd). Currently, our encoder and decoder
come from an autoencoder proposed in [3]; their parameters
θe, θd are however learned by our training framework, which
aims to strike a good trade-off between rate LR(q) and dis-
tortionLD(x, x̂) by minimizing the following objective func-
tion with respect to θe, θd:

λ× LR(q) + LD(x, x̂), (1)

where LD(x, x̂) is defined to be a weighted sum of mean-
square errors between YUV components of x and x̂, with
the error of Y component weighted 4 times that of the U/ V
component.

The data path in training mode, as outlined by the dashed
arrow lines, is designed for end-to-end model training. Train-
ing a learning-based compression system is often faced with
two issues: (1) the quantization effect, which describes the
stair-like mapping from f to f̂ , gives rise to zero gradients
almost everywhere, and (2) the rate cost needed to achieve
a rate-distortion optimized design is difficult to estimate ac-

curately. To address these issues, we introduce the notion of
soft bits q̃ as an alternative to the hard bit representation of the
quantization indices q. As an example, instead of rendering
q into ”1”,”1”,”0”,”0” for f = 0.81, b = 4 as done previ-
ously, we express these binary hard bits as real-valued soft
bits, e.g. ”0.91”, ”0.95”, ”0.1”, ”0.07”, by the soft bit con-
version (SB Conv.) module. In doing so, each of these soft
bits is formulated as a differentiable function of f . Not only
can they be used together with a differentiable rate estimator,
implemented by a learnable neural network with parameter
θr in Fig. 1, to give an accurate estimate of the coding cost,
but they can also be used to approximate f̂ in a differentiable
manner (by the Inv. SB Conv. module).

To sum up, our framework has three networks to be
learned end-to-end: the encoder, the decoder, and the rate
estimator. Among these, only the encoder and the decoder
will actually operate in the test mode, while the rate estimator
is activated for training only.

2.2. Soft Bit Conversion

The soft bit conversion plays a central role in enabling our
compression system end-to-end trainable. It is to convert the
binary, hard-bit representation of the quantization index q of
a feature sample f into a differentiable function of f , namely
the soft-bit representation. In the previous example, the bi-
nary fixed-point representation of q for a feature sample f =
0.81 is ”1100” when f is quantized uniformly with a step
size of 2−4. We observe that each of these hard bits q0 = 1,
q1 = 1, q2 = 0, q3 = 0 is in fact a function of f . For instance,
the first bit q0 equals to 1 when f is in the interval [0.5, 1)
and 0 when in the interval of [0, 0.5). The mappings for the
first two bits q0, q1 are visualized in Fig. 2 (see the hard-bit
curves). Apparently, due to their rectangular waveforms, the
derivative with respect to f is zero almost everywhere, mak-
ing the training with back-propagation impossible.

To circumvent this difficulty, we approximate these hard-
bit mappings by a superposition of sigmoid functions (see the
soft-bit curves in Fig. 2). This is motivated by the fact that any
rectangular waveform can be expressed as a superposition of
step functions, which in turn can be approximated by sigmoid
functions with a adequately chosen hyper-parameter α:

u(f) :=

{
1 if f ≥ 0
0 if f < 0

≈ σα(f) :=
1

1 + e−αf
. (2)

0 0.25 0.5 0.75 1

0

0.5

1

f

q 0
(f
)

Hard Soft

0 0.25 0.5 0.75 1

0

0.5

1

f

q 1
(f
)

Hard Soft

Fig. 2: Soft bit versus hard bit mappings.

X

A B C

D E

F

Fig. 3: Illustration of context template for context-adaptive
bit-plane coding. X denotes the location of a coding sample.

As an example, it is seen that:

q1(f) ≈ q̃1(f)
:= σα(f − 0.25)− σα(f − 0.5)

+ σα(f − 0.75)− σα(f − 1). (3)

With this approximation, f̂ is modeled by the soft bits using
q̃0 × 2−1 + q̃1 × 2−2 + q̃2 × 2−3 + q̃3 × 2−4 in the back-
propagation process. Note that one may as well use the soft
quantization technique in [3] to model the mapping from f to
f̂ directly.

Although our current model implements a power-of-two
uniform quantizer, the soft-bit representation for quantization
indices can readily be applied to non-uniform quantizers.

2.3. Context-adaptive Bit-plane Coding (CABIC)

Before describing our soft-bit-based rate estimation, we
present briefly how the quantization indices q of feature
maps f are coded in the test mode. We first organize q into
bitplanes. A bitplane is formed collectively by the same bi-
nary digits of quantization indices. For example, the most
significant bitplane consists of all the q0 of feature samples.
Bits are then coded starting from the most significant bit-
plane to the least significant one, with different feature maps
processed in the same manner yet separately.

To encode a bitplane, we adopt the context-adaptive bi-
nary arithmetic coding technique. Inspired by JPEG2000, we
classify every bit into a significant bit or a refinement bit. Us-
ing Fig. 3 for illustration, for coding a significant bit of the
quantization index atX , we refer to the binary significant sta-
tus of the surrounding indices atB,D,E and F . This yields a
total of 16 context patterns (or ctx values for short), each cor-
responding to a binary probability model that is updated on-
the-fly. For coding a refinement bit, the ctx value is computed

ctx

q̃i

Probability
Regressor

θr

p(qi|ctx)

-
p(q̃i|ctx)

Fig. 4: Training of our probability regressor.

based on the bit values of quantization indices at B,D,E, F
in the previous bitplane along with those of A,B,C,D in the
current bitplane. Since refinement bits are less predictable,
we reduce the number of their ctx values to 9 only.

Note that we adopt the traditional hand-crafted design for
arithmetic coding because (1) it allows simple adaptation of
the context probability model to learn local image statistics
and (2) it avoids the need to perform neural network inference
at bit level, which introduces extra processing latency in the
highly sequential arithmetic decoding process.

2.4. Rate Estimator

To estimate the code length needed to represent an input bit
at training time, we refer to its self-information. The self-
information of a probabilistic event E is defined to be the
negative logarithm − log p(E) of its probability p(E). In our
case, the probability of a coding bit qi is maintained in a con-
text probability model, which keeps track of p(qi|ctx), where
ctx denotes its context pattern/value. It is however noted
that p(qi|ctx) is approximated by the relative frequency of
qi given the ctx, e.g. how many times the event qi = 1 oc-
curs given the present ctx, which is a statistics quantity not
differentiable with respective to qi.

To overcome this problem, we train a rate estimator that
includes a neural network as a probability regressor to fit
p(qi|ctx) collected from the training data, as illustrated in
Fig. 4. In particular, the probability regressor takes as input
the soft bits version q̃i of qi so that it generates non-zero gra-
dient of the estimated rate (computed to be − log p(q̃i|ctx))
with respect to the encoder parameter θe:

∇θe(− log p(q̃i|ctx)) = −
1

p(q̃i|ctx)
∂p(q̃i|ctx)

∂q̃i

dq̃i
df
∇θef.

(4)

It can be seen that if the hard bit mapping is used, the term
dq̃i/df would be replaced with dqi/df , which vanishes.

Eq. (4) additionally gives us some important insights into
how the estimated rate cost of an input bit qi would influence
the update of the encoder parameter θe. Its contribution to the
change of θe in a gradient update step will be more significant
if qi is in its less probable state, i.e., p(q̃i|ctx) ≤ 0.5, or if its
conditional probability distribution p(q̃i|ctx) is more biased,
i.e., ∂p(q̃i|ctx)/∂q̃i is larger. The latter occurs when p(q̃i =
1|ctx)� p(q̃i = 0|ctx) or vice versa.

0 0.2 0.4 0.6 0.8

0.7

0.74

0.78

0.82

0.86

0.9

0.94

0.98

Avg. bpp

MS-SSIM on Kodak

BPG
JPEG2000
JPEG
Ours
Mentzer et al.

0 0.2 0.4 0.6 0.8
20

22

24

26

28

30

32

34

36

Avg. bpp

PSNR on Kodak

BPG
JPEG2000
JPEG
Ours
Mentzer et al.

Fig. 5: Rate-distortion comparison on Kodak dataset.

Ours Mentzer et al. [3]

JPEG2000 BPG

Fig. 6: Subjective quality comparison at 0.36 bpp.

3. TRAINING

The encoder, decoder, and rate estimator are trained in two
alternating phases. In the first phase, we collect the statistics
of the context probabilities p(qi|ctx) from the feature maps,
and update the rate estimator θr by minimizing the regression
error between p(qi|ctx) and p(q̃i|ctx). In the second phase,
we incorporate the rate estimator to give an estimate of the
rate cost LR(q) and update both the encoder and decoder by
minimizing λ× LR(q) + LD(x, x̂) with respect to their net-
work parameters θe, θd. During training, we set the batch size
to 8 and the learning rate to 1e−4.

The training dataset contains 1,672 images provided by
the Challenge on Learned Image Compression (CLIC) 2018
[11]. They are randomly cropped into 128x128 patches, and
the horizontal and vertical flipping is performed for data aug-
mentation.

4. EXPERIMENTAL RESULTS

This section compares the rate-distortion performances of the
proposed method with the other codecs. The comparison is
conducted on Kodak dataset [12] by compressing test im-

0.06 bpp 0.12 bpp

Fig. 7: Visualization of our feature maps at different rates.
Each rate displays four bitplanes of one feature map per col-
umn.

ages at several rates with a varying number of feature maps.
Specifically, our encoder is configured to produce 4 feature
maps for bits-per-pixel (bpp) lower than 0.25, 8 for bpp’s be-
tween 0.25 and 0.5, and 16 for bpp’s higher than 0.5. For
every test image, we first calculate the average PSNR and
MS-SSIM over its three color components. We then present
the average values over the entire dataset as a single quality
indicator.

From Fig. 5, we see that our method performs comparably
to BPG and Mentzer et al.’s [3] while outperforming JPEG
and JPEG2000 by a large margin across a wide range of bpp’s.
On the other hand, in terms of PSNR, it is much inferior to
BPG but is superior to the other baselines. These observations
are in line with the findings of the other researchers that the
learning-based methods often show much better MS-SSIM
performance, especially at low rates. It is worth pointing out
that our model is trained by minimizing the mean-squared er-
ror while Mentzer et al. [3] optimize theirs for MS-SSIM.
This explains why their method has low PSNR. Fig. 6 further
displays reconstructed images produced by these codecs for
subjective quality evaluation.

Fig. 7 shows the bit allocation among feature maps due to
our soft-bit-based rate-distortion optimization. Three obser-
vations can be made: (1) the dynamic range of feature sam-
ples is adjusted by the encoder depending on the compression
rate, as evidenced by the zero bitplanes at lower bpp’s; (2)
some feature maps are more important than the others in the
rate-distortion sense, as evidenced by the uneven bit distribu-
tion across feature maps; and (3) the bit allocation is spatially
varying, as indicated by the uneven bit distribution across dif-
ferent regions. These together produce a net effect similar in
spirit to the importance map mechanism [1].

5. CONCLUSION

This paper introduces a learned image compression system
with soft-bit-based rate-distortion optimization. The soft bit
representation allows the rate estimation to be tightly coupled
with entropy coding, giving an accurate rate estimate. We also
show that learning-based compression methods can leverage
well-designed coding tools from modern image codecs for a
more cost-effective solution.

6. REFERENCES

[1] M. Li, W. Zuo, S. Gu, D. Zhao, and D. Zhang, “Learn-
ing convolutional networks for content-weighted image
compression,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp.
3214–3223.

[2] O. Rippel and L. Bourdev, “Real-time adaptive image
compression,” in International Conference on Machine
Learning, 2017, pp. 2922–2930.

[3] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte,
and L. Van Gool, “Conditional probability models for
deep image compression,” in IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2018,
vol. 1, p. 3.

[4] D. Minnen, J. Ballé, and G. D. Toderici, “Joint autore-
gressive and hierarchical priors for learned image com-
pression,” in Advances in Neural Information Process-
ing Systems, 2018, pp. 10794–10803.

[5] E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli,
R. Timofte, L. Benini, and L.V. Gool, “Soft-to-hard
vector quantization for end-to-end learning compress-
ible representations,” in Advances in Neural Informa-
tion Processing Systems, 2017, pp. 1141–1151.

[6] J. Ballé, V. Laparra, and E. P Simoncelli, “End-to-
end optimized image compression,” arXiv preprint
arXiv:1611.01704, 2016.

[7] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. John-
ston, “Variational image compression with a scale hy-
perprior,” arXiv preprint arXiv:1802.01436, 2018.

[8] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy
image compression with compressive autoencoders,” in
International Conference on Learning Representations,
2017.

[9] A. Van Oord, N.l Kalchbrenner, and K. Kavukcuoglu,
“Pixel recurrent neural networks,” in International Con-
ference on Machine Learning, 2016, pp. 1747–1756.

[10] D. Taubman and M. Marcellin, JPEG2000 image com-
pression fundamentals, standards and practice: image
compression fundamentals, standards and practice, vol.
642, Springer Science & Business Media, 2012.

[11] “Challenge on Learned Image Compression,” http:
//compression.cc/.

[12] “Kodak PhotoCD dataset,” http://r0k.us/
graphics/kodak/.

http://compression.cc/
http://compression.cc/
http://r0k.us/graphics/ kodak/
http://r0k.us/graphics/ kodak/

	1 Introduction
	2 Proposed Method
	2.1 Overall Architecture
	2.2 Soft Bit Conversion
	2.3 Context-adaptive Bit-plane Coding (CABIC)
	2.4 Rate Estimator

	3 Training
	4 Experimental results
	5 Conclusion
	6 References

