
SPI-Optimizer: an integral-Separated PI Controller for Stochastic Optimization

Dan Wang1∗, Mengqi Ji2∗, Yong Wang1 , Haoqian Wang3 , Lu Fang1†

1 Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
2 The Hong Kong University of Science and Technology, Hong Kong, China

3 Graduate School at Shenzhen, Tsinghua University, Shenzhen, China

Abstract

To overcome the oscillation problem in the classi-
cal momentum-based optimizer, recent work associates it
with the proportional-integral (PI) controller, and artifi-
cially adds D term producing a PID controller. It sup-
presses oscillation with the sacrifice of introducing extra
hyper-parameter. In this paper, we start by analyzing:
why momentum-based method oscillates about the optimal
point? and answering that: the fluctuation problem re-
lates to the lag effect of integral (I) term. Inspired by
the conditional integration idea in classical control society,
we propose SPI-Optimizer, an integral-Separated PI con-
troller based optimizer WITHOUT introducing extra hyper-
parameter. It separates momentum term adaptively when
the inconsistency of current and historical gradient direc-
tion occurs. Extensive experiments demonstrate that SPI-
Optimizer generalizes well on popular network architec-
tures to eliminate the oscillation, and owns competitive per-
formance with faster convergence speed (up to 40% epochs
reduction ratio) and more accurate classification result on
MNIST, CIFAR10, and CIFAR100 (up to 27.5% error re-
duction ratio) than the state-of-the-art methods.

1. Introduction

Serving as a fundamental tool to solve practical problems
in both scientific and engineering domains, a proper opti-
mizer plays vital role. Taking the highly concerned deep
learning successful stories [7, 8, 10, 30, 28, 6, 8] as exam-
ples, stochastic gradient descent (SGD) serves as one of the

∗equal contribution
wd17@mails.tsinghua.edu.cn
mji@connect.ust.hk
†fanglu@sz.tsinghua.edu.cn

most popular solvers, due to its ability in maintaining a good
balance between efficiency and effectiveness. The expecta-
tion in training very deep networks substantially requires
for even more efficient optimizer such as SGD-Momentum
(MOM) [23]. However it suffers from the oscillation prob-
lem [18], with non-negligible maximum overshoot and set-
tling time. Such an oscillation phenomena hinders the con-
vergence of MOM, requiring more training time and re-
sources. As a result, an efficient as well as effective opti-
mizer is urgently demanded yet very challenging, owing to
the highly non-convex nature of the optimization problems.

Recently, some researchers investigate the conven-
tional optimization problem by associating it with the
Proportional-Integral-Derivative (PID) model that widely
used in the feedback control system. By linking the calcula-
tion of errors in feedback control system and the calculation
of gradient in network updating, [1] shows that MOM can
be treated as a special case of classical PID controller with
only Proportional (P) and Integral (I) components. It further
artificially adds the Derivative (D) component to form a PID
based optimizer, which reduces the oscillation phenomena
by introducing troublesome hyper-parameter induced by D
component. In other words, the calculated coefficient of the
derivative term can hardly adapt to the huge diversity of net-
work architectures and different modalities of the training
dataset.

On the contrary to extend PI to PID directly, we explore
“why momentum-based method oscillates about the opti-
mal point?” via thorough analysis from the perspective of
inherent connection between MOM and PI controller. The
in-depth pre-analysis (Section 3.1) reveals that the fluctu-
ation problem in momentum-based method relates to the
lag effect of integral (I) term in PI controller. Inspired
by the conditional integration idea in classical control so-
ciety, we propose SPI-Optimizer, an integral-Separated PI

4321

ar
X

iv
:1

81
2.

11
30

5v
2

 [
cs

.L
G

]
 2

5
Ja

n
20

19

controller based solver for stochastic Optimization scheme.
SPI-Optimizer separates momentum term adaptively when
the inconsistency of current and historical gradient direction
occurs.

More specifically, the insight of SPI-Optimizer can be
explained more explicitly as follows (more discussions in
Section 3.3). For Conditional Integration used in classi-
cal control society (denoted as CI), the integral component
is only considered as long as the magnitude of the feed-
back deviation (the gradient) is smaller than a threshold β.
That means SGD with only proportional (P) term can be
viewed as CI-β = 0. Similarly, MOM never separates out
the integral (I) part and can be denoted as CI-β = +∞.
While the oscillation phenomenon may be tuned by set-
ting β, the convergence speed of CI cannot be improved
by trading off the parameter β, which remains bounded by
CI-β = 0 and CI-β = +∞. Our SPI-Optimizer exam-
ines the sign consistency between the residual and the in-
tegral term before enabling the integral component, thus
easing the oscillation phenomenon WITHOUT introducing
extra hyper-parameter. As a result, it can be theoretically
shown that SPI-Optimizer outperforms both CI-β = 0 and
CI-β = +∞, owning more generalization ability for differ-
ent network structures across several popular dataset. We
summarize the technique contributions as follows.

• By associating MOM with PI controller, we analyt-
ically show that the oscillation in momentum-based
method corresponds to the lag effect of integral (I)
term in PI controller, which inspires us to deal with
I term instead of adding D term, as the latter one intro-
duces extra hyper-parameter.

• A novel SPI-Optimizer based on the integral-Separated
PI controller is proposed to separate momentum term
adaptively when the inconsistency of current and his-
torical gradient direction occurs. The detailed discus-
sion on the convergence of SPI-Optimizer is provided
theoretically.

• SPI-Optimizer eliminates the oscillation phenomenon
without introducing any extra hyper-parameter and
leads to considerably faster convergence speed and
more accurate result on popular network architectures.

2. Related Work

Among the various optimization schemes, the gradient
based methods have served as the most popular optimizer to
solve tremendous optimization problems. The representa-
tive ones include gradient descent (GD) [4], stochastic gra-
dient descent (SGD) [22], heavy ball (HB)[19], Nesterov
accelerated gradient (NAG) [17] etc. While GD is the sim-
plest one, it is restricted by the redundant computations for

large dataset, as it recomputes gradients for similar exam-
ples before updating each parameter. SGD improves it by
sampling a random subset of the overall dataset, yet it is
difficult to pass ravines [24]. HB puts forward by adding a
fraction to accelerate the iteration, which is further devel-
oped and named as Momentum(MOM) [23]. NAG further
uses the momentum term to update parameters and corrects
gradient with some prescience. All of these classic opti-
mization algorithms own fixed learning rates.

Lately, an increasing share of deep learning researchers
train their models with adaptive learning rates methods
[5, 29, 20, 12], due to the requirement of speeding up the
training time [11]. They try to adapt updates to each indi-
vidual parameter to perform larger or smaller updates de-
pending on their importance.

Regardless the successful usage of adaptive method in
in many applications owing to its competitive performance
and its ability to work well despite minimal tuning, the re-
cent findings by [27] show that hand-tuned SGD and MoM
achieves better result at the same or even faster speed than
adaptive method. Furthermore, the authors also show that
for even simple quadratic problems, adaptive methods find
solutions that can be orders-of-magnitude worse at gener-
alization than those found by SGD(M). They put forward
that a possible explanation for the worse results in adaptive
methods lies in the convergence to different local minimums
[9]. It is also noted that most state-of-the-art deep models
such as ResNet [6] and DenseNet [8] are usually trained by
momentum-based method, as the adaptive methods general-
ize worse than SGD-Momentum, even when these solutions
have better training performance.

On the other hand, some researchers try to investigate
stochastic optimization by associating it with the classi-
cal Proportional-Integral-Derivative (PID) controller that
widely used in the feedback control system. The pioneer
work [26] regarded the classical gradient descent algorithm
as the PID controller that uses the Proportional (P) term
merely. They added Integral (I) and Derivative (D) terms
to achieve faster convergence. The latest work [1] inter-
preted that momentum can be treated as a PI controller,
and a Derivative (D) term that is the predictive gradient dif-
ference is added to reduce oscillation and improve SGD-
Momentum on the large-scale dataset. Unfortunately, either
introducing I and D terms to GD, or introducing D term to
SGD-Momentum intensifies the task of tuning (which will
be further elaborated in our experiments).

3. SPI-Optimizer
In this section, we firstly conduct a thorough pre-analysis

on the oscillation phenomena of momentum-based algo-
rithm in Section 3.1. Aided by the association with PI
controller, the oscillation can be explained by the lag ef-
fect of integral (I) term in PI controller. We then propose

4322

a novel SPI-Optimizer to separate I term from PI controller
adaptively, which eases the oscillation problem WITHOUT
introducing extra hyper-parameter. Subsequently, in-depth
discussions to further evaluate SPI-Optimizer are provided
in Section 3.3.

3.1. Pre-analysis of Oscillation

As introduced in [23], the Momentum algorithm (MOM)
works by accumulating an exponentially decayed moving
average of past gradients. Mathematically, the momentum-
based optimizer can be defined as

vt+1 = αvt + r∇L(θ̃t),

θt+1 = θt − vt+1,
(1)

where θ̃t = θt and θ̃t = θt − αvt respectively define MOM
and Nesterov Accelerated Gradient (NAG) [17].

a: MOM’s trajectory

b: MOM c: GD

d: NAG e: SPI

Figure 1: (a): convergence path of MOM on a 2D toy convex func-
tion f1(θ) with colored segments representing each weight update.
(b-e): horizontal residual w.r.t. the optimal point versus time. Two
components for the weight update are the current gradient (red ar-
row) and the momentum (green arrow), which can be interpreted
as two forces dragging the blue curve.

Although the momentum component can accelerate the
convergence in the case of small and consistent gradients, it
suffers from oscillation phenomenon that the convergence

path fluctuates about the optimal point, as shown in Fig. 1a.
Such oscillation can be quantitatively described by two con-
cepts: the settling time ts, defined as the time required for
the curve to reach and stay within a range of certain thresh-
old (1e − 2) to the optimal point, and the maximum over-
shoot describing the difference between the maximum peak
value and the optimal value:

∆θ(i)
max = θ(i)

max − θ(i)∗ (2)

As defined in Eqn. (1), there are two components con-
tributing to the weight update, i.e., the momentum −αvt
and the current gradient −r∇L(θt). The integral term can
introduce some non-negligible weight updates that are op-
posite to the gradient descent direction. In that case, the mo-
mentum will lag the update of weights even if the weights
should change their gradient direction. Analogous to the
feedback control, such lag effect leads to more severe os-
cillation phenomenon, i.e., the convergence path fluctuates
about the optimal point with larger maximum overshoot
∆θ

(i)
max and longer settling time ts.
We further take a commonly used function f1(θ) =

θ(1)2
+ 50θ(2)2

for illustration. In Fig. 1a, the conver-
gence path is composed of multiple weight updates shown
in different colors. By only considering the horizontal axis,
Fig. 1b depicts the residual of the convergence path to the
optimal point using blue curve, and the weight updates
from both the momentum −αvt and the current gradient
−r∇L(θt), shown as green and red arrows respectively. In
the process of approaching the goal, we define several time
stamps: t1 as the time when the curve first exceeds the op-
timal point, t2 as the time when it reaches the maximum
overshoot, and ts as the settling time.

The weight updates (green and red arrows) start with the
same direction (up) until t1. For the duration [t1, t2], be-
cause the weight exceeds the optimal point (origin point in
this specific example), the gradient descent direction (red
arrow) gets reversed. But owing to the large accumulated
gradients value (green arrow), the weight update deviates
from the current rising trend until t2 when αvt+r∇L(θ̃t) =
0. As a result, the momentum introduces lag effect to the
update of weights in the period of [t1, t2] and leads to se-
vere oscillation effect with large maximum overshoot and
long settling time.

Compared with MOM, gradient descent (GD) oscillates
less due to the lack of the accumulated gradients, shown
in Fig. 1c. Even though the maximum overshoot is much
smaller than MOM, the settling time is unacceptably longer.
Due to the lag effect of the momentum within the period
[t1, t2], the oscillation phenomenon of NAG is as severe as
MOM. In Fig. 1, SPI-Optimizer obtained about 55%−73%
convergent epoch reduction ratio.

4323

3.2. integral-Separated PI Controller

The latest work [1] points out that if the optimiza-
tion process is treated as a dynamic system, the optimizer
Stochastic Gradient Descent (SGD) can be interpreted as
a proportion (P) controller with α = 0. Then, MOM and
NAG can be represented as Proportional-Integral (PI) con-
troller. As discussed in the previous subsection, the mo-
mentum term can lead to severe system oscillation about
the optimal point owing to the lag effect of the integral /
momentum. To ease the fluctuation phenomenon, [1] artifi-
cially adds the derivative (D) term to be a PID-Kd controller
with a network-invariant and dataset-invariant coefficient
Kd. However, it is questionable that an universal (D) coeffi-
cientKd, rather than a model-based one, is applicable to di-
verse network structures. At the same time, the newly intro-
duced hyper-parameter for the derivative term needs more
effort for empirical tuning. In contrast, we propose integral-
Separated PI Controller based Optimizer (SPI-Optimizer) to
directly deal with the integral term, WITHOUT introducing
any extra hyper-parameter.

In a typical optimization problem, the loss function L is
a metric to measure the distance between the desired output
y and the prediction f(x|θ) given the weight θ. The gradi-
ent of the weights∇L(θ) can be used to update the weights
till the optimal solution with zero gradient. Hence the gradi-
ent {∇L(θi)}i=0,··· ,t w.r.t. weights can be associated with
the “error” in the feedback control. Consequently, rethink-
ing the problem from the perspective of control, although
PI controller leads to faster respond compared with P con-
troller, it can easily lag and destabilize the dynamic system
by accumulating large historical errors.

Inspired by the conditional integration [2] strategy in
control community, which prevents the integral term from
accumulating within pre-determined bound to effectively
suppress the lag effect, a simple conditional integration op-
timizer (CI-β) is proposed as follows:

v
(i)
t+1 = αv

(i)
t 1{|∇L(θ

(i)
t)| < β}+ r∇L(θ

(i)
t)

θ
(i)
t+1 = θ

(i)
t − v

(i)
t+1,

(3)

where β is the introduced threshold for each dimension of
the state vectors. Unfortunately, such naive adoption leads
to some drawbacks: (1) it requires extra effort to empirically
tune the hyper-parameter β, and β has weak generalization
capability across different cost function L, (2) by manually
selecting the gradient threshold, the performance of CI-β is
almost bounded by SGD (CI-β = 0) and MOM (CI-β =
+∞) certainly.

Recall that what we expect is an optimizer with short
rising time t1 and small maximum overshoot ∆θmax. As
illustrated in Fig. 1 previously, the momentum-based algo-
rithm has much shorter rising time t1 than GD due to the
accumulated gradients. However, the historical gradients

lag the update of weights in the period [t1, t2] when the gra-
dient direction gets reversed, and lead to severe oscillation
about the optimal point. To ease the fluctuation, the pro-
posed SPI-Optimizer isolates the integral component of the
controller when the inconsistency of current and historical
gradient direction occurs, i.e.,

sgn(∇L(θ
(i)
t))sgn(v

(i)
t) = −1. (4)

The SPI-Optimizer is further presented by:

v
(i)
t+1 = αv

(i)
t 1{sgn(∇L(θ

(i)
t))sgn(v

(i)
t)}+ r∇L(θ

(i)
t),

(5)
The key insight here is that the historical gradients will lag
the update of weights if the weights should not keep the
previous direction, i.e., sgn(∇L(θ

(i)
t))sgn(v

(i)
t) 6= 1, lead-

ing to oscillation of gradients about the optimal point until
the gradients compensates the momentum in the reversed
direction. In this way, SPI-Optimizer can converge as fast
as MOM and NAG yet leads to much smaller maximum
overshoot. On the other hand, we may interpret the SPI-
Optimizer from the perspective of state delay.

State Delay: Recall that the objective of this feedback
system is to let the gradient ∇L(θt+1) approach 0, yet we
only have the observation of the state ∇L(θ̃t). This can be
understood as a dynamic system with measurement latency
or temporal delay. The larger the delay is, the more likely
severe oscillation or unstable system occurs. Analogously,
we define dt+1 = |θt+1 − θ̃t| as state delay in stochastic
optimization:

dGD
t+1 = |r∇L(θt)|

dMOM
t+1 = |αvt + r∇L(θt)|
dNAG
t+1 = |r∇L(θt − αvt)|

(6)

Hypothesis: One hypothesis is that for the momentum-
based optimizer (PI controller), the optimizer with smaller
state delay is highly likely having less oscillation, which is
harmful for system stability. As the increase of α in Eqn.
6 from GD to MOM, state delay of MOM dMOM

t+1 has higher
chance to be larger than that of GD dGD

t+1, which explains
why MOM usually oscillates more during optimization pro-
cess. Similarly, NAG can be understood as a more robust PI
controller with smaller state delay under the assumption that
both∇L(θt−αvt) and∇L(θt) share the same probabilistic
distribution. For SPI-Optimizer, when the oscillation is de-
tected, we reduce the state delay by assigning dSPI

t+1 = dGD
t+1.

Otherwise, it remains using PI controller to speed up.

3.3. Discussion

To make the hypothesis mentioned above more intu-
itive and rigorous, and to further quantify how much SPI-
Optimizer improves compared with other optimizer, we

4324

SPI GD MOM

NAG CI-β = 1 CI-β = 10

Figure 2: Convergence comparison within 50 iterations among our
SPI-Optimizer, Momentum (MOM) [23], Gradient Descent (GD)
[4], Nesterov Accelerated Gradient (NAG) [17] and conditional
integral (CI-β) on the quadratic function f1(θ).

specifically take a very simple convex function f1(θ) =

θ(1)2
+ 50θ(2)2

and the McCormick function f2(θ) =
sin(θ(1) + θ(2)) + (θ(1) − θ(2))2 − 1.5θ(1) + 2.5θ(2) + 1
as examples to visualize the optimization procedure. The
concerned representative P or PI based optimizers used for
comparison are Momentum (MOM) [23], Gradient Descent
(GD) [22], Nesterov Accelerated Gradient (NAG) [17] and
Conditional Integration (CI-β) [2] with different threshold-
ing parameter β.

The convergence path of each optimizer applying on the
two functions are depicted in Fig. 2 and Fig. 3 (sub-figures
with green background). The optimal point locates at the
origin (3, 2) (the red point), and the convergence process
starts from the blue point with the maximum 100 itera-
tions. The loss is defined as L = ‖f(θ)− f(θ∗)‖2 with
r = 0.012, 0.001,respectively. Apparently, GD and SPI
oscillate the least, and NAG tends to be more stable than
MOM. This intuitively validates the previous hypothesis:
for the same type of optimization controller, the one with
smaller state delay is highly likely having less oscillation.

Additionally, the convergence speed of all the meth-
ods can be inferred from the top chart in Fig. 2 and
Fig. 3, where the naive conditional integration inspired

SPI GD MOM

NAG CI-β = 1 CI-β = 10

Figure 3: Performance comparison within 100 iterations among
our SPI-Optimizer, Momentum (MOM) [23], Gradient Descent
(GD) [4], Nesterov Accelerated Gradient (NAG) [17] and condi-
tional integral (CI-β) on the 2D non-convex McCormick function
f2(θ).

controller with different thresholds β are marked as CI-
β = {0.1, 1, 10, 100, 1000}. From the definition of CI-β,
we can tell that the performance of CI-β is almost bounded
by GD (CI-β = 0) and MOM (CI-β = +∞), which can
also be interpreted from both Fig. 2 and Fig. 3. It is wor-
thy note that the hyper-parameter β aggravates the param-
eter tuning methodology, since it should be determined by
the characteristics of the loss functions L that depends on
the training data 〈x, y〉, the network structure f(·|θ) and the
metric between y = f(x|θ∗) and y = f(x|θ). Even in the
toy 2D example, the extra introduced hyper-parameter β by
the CI-β is not reliable for a favorable result.

In contrast, the proposed SPI-Optimizer takes precau-
tions against oscillation that may lead to unstable system
and slow convergence, by preventing large state delays. So
that the fluctuation phenomenon of the convergence curve
gets eased. Meanwhile, the convergence rate of SPI is
clearly superior to that of others, not only in the initial
stages where the value of error function is significant, but
also in the later part when the error function is close to the
minimum. Quantitatively the convergence speed reaches up
to 8% and 33% epoch reduction ratio respectively on the 2D

4325

function f1(θ) and f2(θ) when the L2 norm of the residual
hits the threshold 1e-5.

Convergence analysis: More importantly, we conduct
theoretical analysis on the convergence of SPI-Optimizer,
and show that under certain condition that the loss func-
tion f(θ) is µ-strongly convex and L-smooth[21], and the
learning rate r and momentum parameter α within a proper
range, 1) the convergence of SPI-Optimizer can be guar-
anteed strictly, 2) the convergence rate of SPI-Optimizer is
faster than MOM. Due to limited space, the detailed analy-
sis is presented in the supplementary material.

4. Experiments

Following the discussion on the 2D demo with harsh
fluctuation, this section studies the performance of SPI-
Optimizer on the convolutional neural networks (CNNs),
consisting of convolution layers and non-linear units.

In the first subsection, we compare with the most rele-
vant solutions for dealing with the oscillation problem of
the integral component. One method is the PID-Kd [1] that
adds a derivative (D) term to MOM. Another counterpart is
the conditional integration (CI-β) optimizer, introducing a
hyper-parameter β to define a bound within which the mo-
mentum term gets prevented. In contrast, the proposed SPI-
Optimizer does not introduce extra hyper-parameter and
outperforms both of them.

Subsequently, experiments are conducted to evaluate the
P controller (SGD) and the PI controllers (MOM and NAG)
under various training settings, showing that SPI-Optimizer
is more robust to large learning rate range, different learning
rate decay schemes, and various network structures.

Finally, SPI-Optimizer is compared with the state-of-the-
art optimization methods in different datasets across differ-
ent network structures to illustrate its better generalization
ability.

Note that all the reported charts and numbers are aver-
aged after 3 runs.

4.1. Compare with the Oscillation Compensators

Comparison with PID-Kd: Fig. 4 depicts the per-
formance using CNNs1 on the handwritten digits dataset
MNIST [15] consisting of 60k training and 10k test 28x28
gray images. Even though PID-Kd [1] can ease the oscil-
lation problem of MOM, its hyper-parameter Kd requires
much effort for empirical tuning to get relatively better re-
sult. Specifically, a large range of Kd is tested from 0.1
to 155; however, SPI-Optimizer performs better in terms of
faster convergence speed 74% and around 33% error reduc-
tion ratio than PID-Kd.

1 The architecture of CNNs contains 2 alternating stages of 5x5 convolution
lifters and 2x2 max pooling with stride of 1 followed by a fully connected
layer output. The dropout noise applies on the fully connected layer.

Figure 4: Performance comparison between SPI-Optimizer and
PID-Kd with different Kd on the MNIST dataset. Compared with
SPI-Optimizer without extra hyper-parameter, PID-Kd requires
big effort to be tuned.

One may notice that the curve for Kd = 100 and Kd =
155 (blue dashed line) did not appear in the Fig. 4, since
Kd = 100 and Kd = 155 can not lead to convergence but
Kd = 155 is followed equation ofKd initial value selection
in [1] when set learning rate is 0.12. It’s worth pointing out
that a similar situation exists for other learning rate. That
can be explained by the fact that the hyper-parameter Kd

requires big effort to be tuned. One guess is that Kd should
depend on many factors, such as the training data, the net-
work structure and the network loss metric.

Additionally, the comparison of the generalization abil-
ity across various network structures and datasets is listed
in Tab. 2, where SPI-Optimizer also constantly outperforms
PID-Kd. More importantly, SPI-Optimizer does not intro-
duce extra hyper-parameter.

CIFAR-10 CIFAR-100

Figure 5: Comparison between Condition Integration (CI-β) and
SPI-Optimizer in CIFAR dataset using AlexNet. The performance
of CI-β is almost bounded by SGD (CI-β = 0) and MOM (CI-
β = +∞). SPI-Optimizer outperforms all of them by a large
margin without introducing hyper-parameter.

Comparison with CI-β: As we observe from the toy
examples in Section 3.3, the performance of CI-β is almost

4326

Methods
CIFAR-10 CIFAR-100

lr=0.05 lr=0.1 lr=0.18 lr=0.05 lr=0.1 lr=0.18
SGD 24.812% 24.757% 25.522% 60.089% 60.240% 60.079%
MOM 24.929% 27.766% NaN 59.158% 68.312% NaN
NAG 24.753% 26.811% NaN 58.945% 67.091% NaN
SPI 24.257% 24.245% 25.823% 58.188% 57.179% 57.223%

Table 1: Three learning rate values are evaluated on both CIFAR-10 and CIFAR-100 datasets with AlexNet. Test errors are listed. Note
that the symbol “NaN” indicates that the optimization procedure cannot converge with that specific setting. Compared with other P/PI
optimizers (SGD, MOM, and NAG), SPI-Optimizer is more robust to larger learning rate while retaining the best performance.

bounded by SGD (CI-β = 0) and MOM (CI-β = +∞).
Similarly, from Fig. 5 we get the same conclusion that
CI-β can hardly outperforms SGD and MOM in a large
searching range of β. The comparison is conducted on the
larger datasets CIFAR-10 [13]2 and CIFAR-100 [13]3 us-
ing AlexNet [14]. Quantitatively, without any extra hyper-
parameter, the proposed SPI-Optimizer can reach higher ac-
curacy (3% error reduction ratio) and faster convergence
(40% speed up) than CI-β with β ranging from 0 to +∞.

4.2. Comparison with P/PI Optimizers

a: Fixed learning rate r = 0.05 b: Learning rate decay

Figure 6: Trained on the CIFAR-100 dataset using AlexNet, SPI-
Optimizer achieves good performance diffent learning rate de-
cay schemes. The horizontal dotted-line corresponds to the high-
est accuracy of SGD, and the convergence speedup ratio of SPI-
Optimizer is around 35%.

High Adaptability Of Learning Rate: The comparison
for different learning rate is demonstrated in Tab. 1, where
three learning rate values are evaluated on both CIFAR-
10 and CIFAR-100 datasets with AlexNet. Note that the
symbol “NaN” indicates that the optimization procedure
cannot converge with that specific setting. Interestingly,
SPI-Optimizer is the only surviving PI controller (momen-
tum related optimizer) in the case with large learning rate
r = 0.18. We can safely conclude that, compared with other
P/PI optimizers (SGD, MOM, and NAG), SPI-Optimizer is

2 The CIFAR-10 dataset consists of 60000 32x32 colour images in 10
classes, with 6000 images per class. There are 50000 training images and
10000 test images.

3 The CIFAR-100 is just like the CIFAR-10, except it has 100 classes con-
taining 600 images each.

CIFAR10 ResNet CIFAR100 ResNet

(c) CIFAR-100 Wide-ResNet

Figure 7: Trained on the CIFAR-10, CIFAR-100 dataset using
ResNet and Wide-ResNet. SPI-Optimizer constantly performs the
best in terms of 40% faster convergence and 5% error reduction
ratio than the second best method.

more robust to larger learning rate while retaining the best
performance.

Learning Rate Decay: We investigate the influence of
different learning rate update schemes to the performance.
Firstly, Fig. 6a depicts the result of constant learned rate
r = 0.05, which is corresponding to the best performance
of the other methods in Tab. 1. Even though we choose
the setting with small performance gap with the others,
the convergence speedup can still reach 35% by comparing
with the 2nd best method (SGD). It is calculated based on
the (epoch, error percentage) key points of SPI-Optimizer
(125, 78%) and SGD (200, 78%).

Then, as a comparison, results with decayed learning rate
by a factor of 0.1 in every 30 epochs is reported in Fig. 6b.
Even though MOM and NAG rise faster in the very begin-
ning, SPI-Optimizer still has a big accuracy improvement
versus the others. So that the proposed method can per-
forms good in different learning rate decay schemes.

Convergence speed and Accuracy: We investigate SPI-

4327

Optimization Methods MNIST C10(AlexNet) C10(WRN) C100(AlexNet) C100(WRN) mean error reduction ratio
SGD [22] 1.111% 24.757% 5.252% 60.079% 23.392% 7.9%
MOM [23] 1.720% 24.929% 4.804% 59.158% 21.684% 11.5%
NAG [17] 1.338% 24.753% 4.780% 58.945% 22.414% 8.3%
Adam [12] 1.110% 27.031% 10.254% 63.397% 32.548% 23.5%

RMSprop [25] 1.097% 30.634% 11.377% 65.704% 34.182% 27.5%
PID [1] 1.3% 24.672% 5.055% 58.946% 21.93% 8.3%

Addsign [3] 1.237% 24.811% 7.6% 60.482% 25.344% 16.4%
SPI 1.070% 24.245% 4.320% 57.118% 20.890% -

Table 2: Test error emethod of the state-of-the-art methods on MNIST, CIFAR-10 and CIFAR-100 with different network structures. The
mean error reduction (up to 27.5%) colomn averages the error reduction ratio (eothers − eSPI)/eothers across different network and dataset
(along each row) w.r.t. the proposed method.

Optimizer with other optimizers on CIFAR-10 and CIFAR-
100 dataset with Resnet-56[6] and Wide ResNet (WRN)
[28]. [6] trained ResNet-56 on CIFAR-10, CIFAR-100 by
droping the learning rate by 0.1 at 50% and 75% of the train-
ing procedure and using weight decay of 0.0001. We use the
same setting for the experiments in Fig. 7. WRN-16-8 is se-
lected that consists 16 layers with widening factor k = 8.
Following [28] training method, we also used weight de-
cay of 0.0005, minibatch size to 128. The learning rate is
dropped by a factor 0.2 at 60th, 120th, and 160th epoch
with total budget of 200 epochs. For each optimizer we re-
port the best test accuracy out of 7 different learning rate
settings ranging from 0.05 to 0.4. From Fig. 7 we can see
that SPI-Optimizer constantly performs the best in terms of
40% faster and 5% more error reduction ratio than the sec-
ond best method.

4.3. Comparison with the State-of-the-art

To further demonstrate the effectiveness and the ef-
ficiency of SPI-Optimizer, we conduct the comparison
with several state-of-the-art optimizers on different datasets
MNIST, CIFAR-10, and CIFAR-100 by using AlexNet and
WRN, as shown in Tab. 2. The compared methods in-
cludes P controller (SGD), PI controller (MOM and NAG),
Adam [12], RMSprop [25], PID-Kd [1], and Addsign [3],
, of which the test error emethod is reported in the ta-
ble. Additionally, the average of the error reduction ratio
((eothers − eSPI)/eothers) across different network and dataset
(along each row) w.r.t. the proposed method is listed in the
last column. Similar conclusions as the ones in previous
subsections can be made, that SPI-Optimizer outperforms
the state-of-the-art optimizers by a large margin in terms of
faster convergence speed (up to 40% epochs reduction ratio)
and more accurate classification result (up to 27.5% mean
error reduction ratio). Such performance gain can also ver-
ify the generalization ability of SPI-Optimizer across differ-
ent datasets and different networks.

5. Conclusion
By analyzing the oscillation effect of the momentum-

based optimizer, we know that the lag effect of the accu-
mulated gradients can lead to large maximum overshoot
and long settling time. Inspired by the recent work in as-
sociating stochastic optimization with classical PID con-
trol theory, we propose a novel SPI-Optimizer that can be
interpreted as a type of conditional integral PI controller,
which prevents the integral / momentum term by examin-
ing the sign consistency between residual and integral term.
Such adaptability further guarantees the generalization of
optimizer on various networks and datasets. The extensive
experiments on MNIST, CIFAR-10 and CIFAR-100 using
various popular networks fully support the superior per-
formance of SPI-Optimizer, leading to considerably faster
convergence speed (up to 40% epochs reduction ratio) and
more accurate result (up to 27.5% error reduction ratio) than
the classical optimizers such as MOM, SGD, NAG on dif-
ferent networks and datasets.

References
[1] W. An, H. Wang, Q. Sun, J. Xu, Q. Dai, and L. Zhang. A pid

controller approach for stochastic optimization of deep net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 8522–8531, 2018.

[2] K. J. Astrom and L. Rundqwist. Integrator windup and how
to avoid it. In American Control Conference, 1989, pages
1693–1698. IEEE, 1989.

[3] I. Bello, B. Zoph, V. Vasudevan, and Q. V. Le. Neural op-
timizer search with reinforcement learning. In International
Conference on Machine Learning, pages 459–468, 2017.

[4] A. Cauchy. Méthode générale pour la résolution des sys-
temes d’équations simultanées. Comp. Rend. Sci. Paris,
25(1847):536–538, 1847.

[5] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradi-
ent methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121–2159,
2011.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE con-

4328

ference on computer vision and pattern recognition, pages
770–778, 2016.

[7] G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. science,
313(5786):504–507, 2006.

[8] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger.
Densely connected convolutional networks. In CVPR, vol-
ume 1, page 3, 2017.

[9] D. J. Im, M. Tao, and K. Branson. An empirical analysis
of the optimization of deep network loss surfaces. arXiv
preprint arXiv:1612.04010, 2016.

[10] M. Ji, J. Gall, H. Zheng, Y. Liu, and L. Fang. Surfacenet: An
end-to-end 3d neural network for multiview stereopsis. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 2307–2315, 2017.

[11] A. Karparthy. A peak at trends in machine learning. 2017.
[12] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.
[13] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. Technical report, Citeseer, 2009.
[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

[16] N. Loizou and P. Richtárik. Momentum and stochas-
tic momentum for stochastic gradient, newton, proximal
point and subspace descent methods. arXiv preprint
arXiv:1712.09677, 2017.

[17] Y. E. Nesterov. A method for solving the convex program-
ming problem with convergence rate o (1/kˆ2). In Dokl.
Akad. Nauk SSSR, volume 269, pages 543–547, 1983.

[18] K. Ogata. Discrete-time control systems, volume 2. Prentice
Hall Englewood Cliffs, NJ, 1995.

[19] B. T. Polyak. Some methods of speeding up the convergence
of iteration methods. USSR Computational Mathematics and
Mathematical Physics, 4(5):1–17, 1964.

[20] S. J. Reddi, S. Kale, and S. Kumar. On the convergence of
adam and beyond. 2018.

[21] P. Richtárik and M. Takáč. Stochastic reformulations of
linear systems: algorithms and convergence theory. arXiv
preprint arXiv:1706.01108, 2017.

[22] H. Robbins and S. Monro. A stochastic approximation
method. The Annals of Mathematical Statistics, 22(3):400–
407, 1951.

[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learn-
ing representations by back-propagating errors. nature,
323(6088):533, 1986.

[24] R. Sutton. Two problems with back propagation and other
steepest descent learning procedures for networks. In Pro-
ceedings of the Eighth Annual Conference of the Cognitive
Science Society, 1986, pages 823–832, 1986.

[25] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Di-
vide the gradient by a running average of its recent magni-
tude. COURSERA: Neural networks for machine learning,
4(2):26–31, 2012.

[26] R. Vitthal, P. Sunthar, and C. D. Rao. The generalized
proportional-integral-derivative (pid) gradient descent back
propagation algorithm. Neural Networks, 8(4):563–569,
1995.

[27] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht.
The marginal value of adaptive gradient methods in machine
learning. In Advances in Neural Information Processing Sys-
tems, pages 4148–4158, 2017.

[28] S. Zagoruyko and N. Komodakis. Wide residual networks.
arXiv preprint arXiv:1605.07146, 2016.

[29] M. D. Zeiler. Adadelta: an adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012.

[30] H. Zheng, L. Fang, M. Ji, M. Strese, Y. Özer, and E. Stein-
bach. Deep learning for surface material classification using
haptic and visual information. IEEE Transactions on Multi-
media, 18(12):2407–2416, 2016.

4329

Supplementary Material for the Paper:
“SPI-Optimizer: an integral-Separated PI Controller for Stochastic Optimization”

1. More 2D Examples
Aiming for an intuitive illustration of the performance of proposed SPI-Optimizer, we present more 2D examples on

several well-known functions in optimization community, the Rosenbrock function Eqn. 7, the Goldstein-Price function Eqn.
8, and a non-convex function Eqn. 9.

Recall that the loss is defined as L = ‖f(θ)− f(θ∗)‖2. The top charts of Fig. 8, Fig. 9, and Fig. 10 depict the loss L in
log scale over epochs. The left column of subfigures illustrates the convergence path of each algorithm. The right column of
subfigures shows the change of the horizontal residue w.r.t. the optimal point over epochs. The weight update consists of the
current gradient (red arrow) and the momentum (green arrow), which can be interpreted as two forces dragging the residual
curve (blue).

The Rosenbrock function:

f3(θ) = (1− θ(1))2 + 100(θ(2) − θ(1)2
)2 (7)

The convergence path depicted in Fig. 8 starts at the point (4,−1.5) (the blue dot) with the optimal point locating at (1, 1)
(the red dot). The lr is r = 6e− 5.

The Goldstein-Price function:

f4(θ) =[1 + (θ(1) + θ(2) + 1)2(19− 14θ(1) + 3θ(1)2
− 14θ(2) + 6θ(1)θ(2) + 3θ(2)2

)]∗

[30 + (2θ(1) − 3θ(2))2(18− 32θ(1) + 12θ(1)2
+ 48θ(2) − 36θ(1)θ(2) + 27θ(2)2

)]
(8)

The convergence path depicted in Fig. 9 starts at the point (−4, 4.5) (the blue dot) with the optimal point locating at
(0,−1) (the red dot). The lr is r = 5e− 8.

A 2D trigonometric function:

f5(θ) = −[cos(θ(1)) + 1][cos(2θ(2)) + 1] (9)

The convergence path depicted in Fig. 10 starts at the point (−2, 1) (the blue dot) with the optimal point locating at (0, 0)
(the red dot). The lr is r = 0.012.

Apparently, GD and SPI oscillate the least, and NAG tends to be more stable than MOM. This intuitively validates the
previous hypothesis: the optimizer with smaller state delay is less likely to oscillate around about the optimal point.

4330

SPI GD MOM NAG

Figure 8: Convergence comparison among the proposed SPI-Optimizer, Gradient Descent (GD) [4], Momentum (MOM) [23], and Nesterov
Accelerated Gradient (NAG) [17] on the Rosenbrock function Eqn. 7. The top chart depicts the L2 distance to the optimal point in log
scale over epochs. The middle row of subfigures illustrate the convergance path of the each algorithm. The bottom row of subfigures show
the change of the horizontal residual w.r.t. the optimal point over epochs. Two components for the weight update are the current gradient
(red arrow) and the momentum (green arrow), which can be interpreted as two forces dragging the blue curve.

4331

SPI GD MOM NAG

Figure 9: Convergence comparison among the proposed SPI-Optimizer, Gradient Descent (GD) [4], Momentum (MOM) [23], and Nesterov
Accelerated Gradient (NAG) [17] on the Goldstein-Price function Eqn. 8. The top chart depicts the L2 distance to the optimal point in log
scale over epochs. The middle row of subfigures illustrate the convergance path of the each algorithm. The bottom row of subfigures show
the change of the horizontal residual w.r.t. the optimal point over epochs. Two components for the weight update are the current gradient
(red arrow) and the momentum (green arrow), which can be interpreted as two forces dragging the blue curve.

4332

SPI GD MOM NAG

Figure 10: Convergence comparison among the proposed SPI-Optimizer, Gradient Descent (GD) [4], Momentum (MOM) [23], and Nes-
terov Accelerated Gradient (NAG) [17] on the non-convex function Eqn. 9. The top chart depicts the L2 distance to the optimal point in
log scale over epochs. The middle row of subfigures illustrate the convergance path of the each algorithm. The bottom row of subfigures
show the change of the horizontal residual w.r.t. the optimal point over epochs. Two components for the weight update are the current
gradient (red arrow) and the momentum (green arrow), which can be interpreted as two forces dragging the blue curve.

4333

2. Convergence Proof of SPI-Optimizer
Given the mathematical representation of SPI-Optimizer as

θk+1 = θk − r∇fk (θk) + α (θk − θk−1)1{sgn(∇fk)sgn (θk−1 − θk)}, (10)

we particularly introduce a diagonal matrix Λk to replace the indicator function for ease of derivation. The diagonal elements
in Λk are all 1 or 0, indicating whether momentum terms are deserted on different dimensions. Then, we have ΛT

k Λk = Λk,
and Eqn. 10 is represented as

θk+1 = θk − r∇fk (θk) + αΛk (θk − θk−1) . (11)

By further denoting ‖θ‖2Λk
= θTΛkθ, 〈θ1, θ2〉Λk

= θT
1 Λkθ2, and θ∗ as the global minimum point satisfying∇f(θ∗) = 0,

it can be shown that several inequalities hold as follows,

‖θk − θk−1‖2Λk
= ‖(θk − θ∗)− (θk−1 − θ∗)‖2Λk

≤ 2 ‖θk − θ∗‖2Λk
+ 2 ‖θk−1 − θ∗‖2Λk

2 〈θk − θ∗, θk − θk−1〉Λk
= ‖θk − θ∗‖2Λk

− ‖θk−1 − θ∗‖2Λk
+ ‖θk − θk−1‖2Λk

≤ 3 ‖θk − θ∗‖2Λk
+ ‖θk−1 − θ∗‖2Λk

2 〈∇fk (θk) , θk−1 − θk〉Λk
≤ 2 ‖∇fk (θk)‖Λk

‖θk − θk−1‖Λk
≤ ‖∇fk (θk)‖2Λk

+ ‖θk − θk−1‖2Λk

≤ ‖∇fk (θk)‖2Λk
+ 2 ‖θk − θ∗‖2Λk

+ 2 ‖θk−1 − θ∗‖2Λk

Now we focus on studying whether the sequence {θk} generated by SPI converges to the best parameter point θ∗ by
decomposing ‖θk+1 − θ∗‖2 as follows. Note that we have combined the three inequalities above during the derivation
process.

‖θk+1 − θ∗‖2

= ‖θk − r∇fk (θk) + αΛk (θk − θk−1)− θ∗‖2

=‖θk − r∇fk (θk)− θ∗‖2 + 2α 〈θk − r∇fk (θk)− θ∗, θk − θk−1〉Λk
+ α2 ‖θk − θk−1‖2Λk

=‖θk − θ∗‖2 − 2r 〈∇fk (θk) , θk − θ∗〉+ r2 ‖∇fk (θk)‖2

+ 2α 〈θk − θ∗, θk − θk−1〉Λk
+ 2rα 〈∇fk (θk) , θk−1 − θk〉Λk

+ α2 ‖θk − θk−1‖2Λk

≤‖θk − θ∗‖2 + (3α+ 2rα+ 2α2) ‖θk − θ∗‖2Λk
+ (α+ 2rα+ 2α2) ‖θk−1 − θ∗‖2Λk

− 2r 〈∇fk (θk) , θk − θ∗〉+ r2 ‖∇fk (θk)‖2 + rα ‖∇fk (θk)‖2Λk
.

Take a typical case that f(θ) is a convex function for example, which is usually assumed to be a µ-strongly convex and
L-smooth function[21]. According to the convex optimization theory, we have inequalities as follows,

µ-strongly convex : 〈∇f (θ) , θ − θ∗〉 ≥ µ ‖θ − θ∗‖2 ,
L-smooth :‖∇f(θ)−∇f(θ∗)‖ = ‖∇f(θ)‖ ≤ L‖θ − θ∗‖.

While the stochastic gradients of loss function f(θ) is adopted by denoting the stochastic gradient in epoch k as ∇fk(θ),
according to the L−smooth property we can assume that such property holds for all stochastic gradients in the experiments,
or we can increase the value of L to satisfy it. Hence we have

‖θk+1 − θ∗‖2 ≤‖θk − θ∗‖2 + (3α+ 2rα+ 2α2) ‖θk − θ∗‖2Λk
+ (α+ 2rα+ 2α2) ‖θk−1 − θ∗‖2Λk

− 2r 〈∇fk (θk) , θk − θ∗〉+ (rα+ r2) ‖∇fk (θk)‖2

≤(1 + rαL2 + r2L2) ‖θk − θ∗‖2 + (3α+ 2rα+ 2α2) ‖θk − θ∗‖2Λk

+ (α+ 2rα+ 2α2) ‖θk−1 − θ∗‖2Λk
− 2r 〈∇fk (θk) , θk − θ∗〉 .

Taking expectations on both sides, we have

E ‖θk+1 − θ∗‖2 ≤(1 + rαL2 + r2L2)E ‖θk − θ∗‖2 + (3α+ 2rα+ 2α2)E ‖θk − θ∗‖2Λk

+ (α+ 2rα+ 2α2)E ‖θk−1 − θ∗‖2Λk
− 2r 〈∇f (θk) , θk − θ∗〉

≤
(
1 + 3α+ 2rα+ 2α2 + rαL2 + r2L2 − 2rµ

)
E ‖θk − θ∗‖2

+
(
α+ 2rα+ 2α2

)
E ‖θk−1 − θ∗‖2 .

4334

The last step above is based on the inequality ‖θ‖2Λk
≤ ‖θ‖2. For the case of SGD-momentum, we have

Λk ≡ I, ‖θ‖2Λk
≡ ‖θ‖2 . As a result, we can see that the bound of our SPI-Optimizer is more tight than that of

SGD-momentum.

Now we investigate whether such bound is sufficient enough for convergence. By denoting bk = 1 + 3α+ 2rα+ 2α2 +
rαL2 + r2L2 − 2rµ, bk−1 = α+ 2rα+ 2α2, we have

E ‖θk+1 − θ∗‖2 ≤ bkE ‖θk − θ∗‖2 + bk−1E ‖θk−1 − θ∗‖2 .

According to Lemma 9 in Loizou’s study [16], as long as bk−1 ≥ 0, bk + bk−1 < 1, the convergence of sequence
{‖θk − θ∗‖2} is guaranteed, which implies that(

1 + 3α+ 2rα+ 2α2 + rαL2 + r2L2 − 2rµ
)

+
(
α+ 2rα+ 2α2

)
< 1

⇒ 4α2 + (4 + 4r + rL2)α+ r2L2 − 2rµ < 0

Considering that r and α are positive, we have r2L2 − 2rµ < 0. Hence its solution can be given as

0 < r <
2µ

L2
, 0 < α <

−(4 + 4r + rL2) +
√

(4 + 4r + rL2)2 + 16(2rµ− r2L2)

8
.

The result indicates that the convergence of our SPI-Optimizer can be guaranteed under certain values of r and α. It is
worth noting that we have used the inequality ‖θ‖2Λk

≤ ‖θ‖2 during our derivation, while for the SGD-momentum algorithm,
none of the components is discarded. Consequently, the bound of our SPI-Optimizer will be tighter than that of SGD-
momentum. In other words, our SPI-Optimizer tends to converge faster than SGD-momentum under certain parameters.

References
[1] W. An, H. Wang, Q. Sun, J. Xu, Q. Dai, and L. Zhang. A pid controller approach for stochastic optimization of deep networks. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 8522–8531, 2018.
[2] K. J. Astrom and L. Rundqwist. Integrator windup and how to avoid it. In American Control Conference, 1989, pages 1693–1698.

IEEE, 1989.
[3] I. Bello, B. Zoph, V. Vasudevan, and Q. V. Le. Neural optimizer search with reinforcement learning. In International Conference on

Machine Learning, pages 459–468, 2017.
[4] A. Cauchy. Méthode générale pour la résolution des systemes d’équations simultanées. Comp. Rend. Sci. Paris, 25(1847):536–538,

1847.
[5] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine

Learning Research, 12(Jul):2121–2159, 2011.
[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 770–778, 2016.
[7] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. science, 313(5786):504–507, 2006.
[8] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional networks. In CVPR, volume 1,

page 3, 2017.
[9] D. J. Im, M. Tao, and K. Branson. An empirical analysis of the optimization of deep network loss surfaces. arXiv preprint

arXiv:1612.04010, 2016.
[10] M. Ji, J. Gall, H. Zheng, Y. Liu, and L. Fang. Surfacenet: An end-to-end 3d neural network for multiview stereopsis. In Proceedings

of the IEEE International Conference on Computer Vision, pages 2307–2315, 2017.
[11] A. Karparthy. A peak at trends in machine learning. 2017.
[12] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
[13] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Technical report, Citeseer, 2009.
[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in

neural information processing systems, pages 1097–1105, 2012.
[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998.
[16] N. Loizou and P. Richtárik. Momentum and stochastic momentum for stochastic gradient, newton, proximal point and subspace

descent methods. arXiv preprint arXiv:1712.09677, 2017.

4335

[17] Y. E. Nesterov. A method for solving the convex programming problem with convergence rate o (1/kˆ2). In Dokl. Akad. Nauk SSSR,
volume 269, pages 543–547, 1983.

[18] K. Ogata. Discrete-time control systems, volume 2. Prentice Hall Englewood Cliffs, NJ, 1995.
[19] B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computational Mathematics and Mathe-

matical Physics, 4(5):1–17, 1964.
[20] S. J. Reddi, S. Kale, and S. Kumar. On the convergence of adam and beyond. 2018.
[21] P. Richtárik and M. Takáč. Stochastic reformulations of linear systems: algorithms and convergence theory. arXiv preprint

arXiv:1706.01108, 2017.
[22] H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical Statistics, 22(3):400–407, 1951.
[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. nature, 323(6088):533,

1986.
[24] R. Sutton. Two problems with back propagation and other steepest descent learning procedures for networks. In Proceedings of the

Eighth Annual Conference of the Cognitive Science Society, 1986, pages 823–832, 1986.
[25] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA:

Neural networks for machine learning, 4(2):26–31, 2012.
[26] R. Vitthal, P. Sunthar, and C. D. Rao. The generalized proportional-integral-derivative (pid) gradient descent back propagation

algorithm. Neural Networks, 8(4):563–569, 1995.
[27] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht. The marginal value of adaptive gradient methods in machine learning.

In Advances in Neural Information Processing Systems, pages 4148–4158, 2017.
[28] S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.
[29] M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.
[30] H. Zheng, L. Fang, M. Ji, M. Strese, Y. Özer, and E. Steinbach. Deep learning for surface material classification using haptic and

visual information. IEEE Transactions on Multimedia, 18(12):2407–2416, 2016.

4336

