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Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Assist. Prof. Dr. Elif Vural
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Abdullah Aydın Alatan
Electrical and Electronics Eng., METU

Assist. Prof. Dr. Elif Vural
Electrical and Electronics Eng., METU

Prof. Dr. İlkay Ulusoy
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ABSTRACT

MULTI-MODAL LEARNING WITH GENERALIZABLE NONLINEAR
DIMENSIONALITY REDUCTION

Kaya, Semih

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Elif Vural

May 2019, 64 pages

Thanks to significant advancements in information technologies, people can acquire

various types of data from the universe. This data may include multiple features

in different domains. Widespread machine learning methods benefit from distinctive

features of data to reach desired outputs. Numerous studies demonstrate that machine

learning algorithms that make use of multi-modal representations of data have more

potential than methods with single modal structure. This potential comes from the

mutual agreement of modalities and the existence of additional information. In this

thesis, we introduce a multi-modal supervised learning algorithm to represent the data

in lower dimensions. We intend to increase within-class similarity and between-class

discrimination for intra- and inter-modal exemplars by a generalizable nonlinear inter-

polator, which satisfies Lipschitz continuity. In order to measure the performance of

the proposed supervised learning algorithm, we have conducted several multi-modal

face recognition and image-text retrieval experiments on frequently used multi-modal

data sets in the literature and achieved quite satisfactory classification and retrieval

accuracy in comparison with existing multi-modal learning approaches. These exper-
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imental findings suggest that the incorporation of the generalizability of the embed-

ding to the whole ambient space and unseen test data in the learning objective yields

promising performance gains in multi-modal representation learning.

Keywords: Cross-modal learning, multi-view learning, cross-modal retrieval, nonlin-

ear embedding, RBF interpolators.
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ÖZ

GENELLENEBİLİR DOĞRUSAL OLMAYAN BOYUT DÜŞÜRME İLE
ÇOKLU MODALİTE ÖĞRENME

Kaya, Semih

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Elif Vural

Mayıs 2019 , 64 sayfa

Bilgi teknolojilerindeki önemli ilerlemeler sayesinde insanlar evrenden çeşitli türde

veriler elde edebilmektedir. Bu veriler farklı alanlarda farklı öznitelikler barındırabil-

mektedir. Yaygın yapay öğrenme yöntemleri istenilen çıktılara ulaşmak için verinin

farklı özniteliklerinden faydalanmaktadır. Çok sayıda çalışma, çoklu modalite göste-

rimleri kullanan yapay öğrenme algoritmalarının tekli modalite algoritmalarına göre

daha yüksek potansiyele sahip olduğunu göstermiştir. Bu potansiyel modalitelerin

uyumluluğu ve birbirlerine göre içerdikleri ilave bilgiden gelmektedir. Bu tezde, ve-

riyi daha düşük boyutlarda gösterebilmek için gözetimli bir çoklu modalite öğrenme

algoritması geliştirilmiştir. Genellenebilir, doğrusal olmayan, Lipschitz devamlılığını

sağlayan bir interpolasyon ile modalite içi ve modaliteler arası örnekler için aynı sınıf

içerisindeki benzerliğin ve sınıflar arası ayrışımın arttırılması hedeflenmiştir. Öne-

rilen gözetimli öğrenme algoritmasının performansını ölçmek için literatürde sıkça

kullanılan çoklu modalite veri kümeleri üzerinde çeşitli çoklu modalite yüz tanıma ve

görüntü-metin erişim deneyleri gerçekleştirilmiş, önerilen yöntem ile var olan çoklu

modalite öğrenme yaklaşımlarına kıyasla oldukça tatmin edici sınıflandırma ve erişim
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doğruluklarına ulaşılmıştır. Bu deney bulguları, öğrenmede kullanılan amaç fonksi-

yonuna gömülümün bütün çevresel uzaya ve önceden görülmemiş test verilerine ge-

nellenebilirliğinin dahil edilmesinin çoklu modalite gösterim öğreniminde geleceği

parlak performans kazanımları sağladığına işaret etmektedir.

Anahtar Kelimeler: Çapraz modalite öğrenme, çoklu görü öğrenme, çapraz modalite

erişim, doğrusal olmayan gömülüm, RBF interpolasyonları.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Machine learning is a technique that enables computing systems to automatically

generate and develop models from available data. A computing system does not need

any explicit programming or human assistance for producing a model [5]. In the past

decades, data acquisition has become easier for a computing system with the help

of growing sensor technology. As a result of this, companies have started to make

considerable investments and construct big data centres in order to deal with huge

amounts of data. At this point, machine learning becomes a powerful tool for the

smart data analysis. It helps data analysers to have solutions that solicit less money,

less time and less energy cost for their specific problems [6].

Machine learning takes fundamental part in various applications in different areas.

Security systems frequently combine face, speech, iris or fingerprint recognition so-

lutions to build more secure access control mechanisms [6]. The main purpose of a

security system is to discriminate people or objects using image, text, audio or video

data. For instance, a smart security camera system can decide whether a known ter-

rorist tries to enter a building stealthily if it is well-trained through images of this

terrorist. Additionally, popular web search, social media, streaming, shopping, mail-

ing applications on the Internet widely use machine learning. Google tries to generate

most relevant search results for users through previously searched contents. YouTube

suggests videos that are highly correlated with previously liked videos by a user. Spo-

tify has similar features for audio streams. Advertisement industry also uses machine

learning to meet people’s needs by using their Internet activities. Detection of spam
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e-mails from their contents is a crucial task for an e-mail application [6]. This is also

highly related to personal or corporate security. Finance sector should be grateful

to machine learning because of the fact that portfolio and risk management applica-

tions, insurance systems and smart trading systems in stock market contain advanced

machine learning algorithms inside [7]. In addition to security systems, Internet ap-

plications and finance, which widely apply machine learning, medical applications

also benefit from it. According to a research conducted by Stanford University, a

kind of skin cancer can be detected earlier using machine learning, in comparison

with traditional methods [8]. This study helps skin cancer patients to recover at the

beginning stages of the disease. Furthermore, human genome studies are thankful to

machine learning.

Although machine learning is a powerful tool for different applications, the following

issues needed to be considered in the literature:

• In order to deal with big training data, relevant and irrelevant features need to

be separated. This is also known as “feature selection”.

• Describing sample spaces with as fewest features as possible is important for

machine learning algorithms. It is emphasized as “dimensionality reduction”.

• Machine learning algorithms may require to protect training data characteristics

when they use “linear/nonlinear projection” techniques. Linear projection is

easy to apply but nonlinear projection may provide extra capabilities to the

machine learning algorithm even if its computational load is higher.

• Real world training sets may not contain the desired output information. If

the desired output information is known, it is called as “supervised learning”.

Otherwise, it is called as “unsupervised learning”. If some training samples

do not have any label information, then it creates “semi-supervised learning”

problems.

• Data is often available in distinct modalities such as image, text, audio or video

representations. For this situation, single-modality-based machine learning al-

gorithms may not be adequate to generate convenient classification or retrieval

results. Intermodal relations can be indicated better through the implementation
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of “cross-modal learning” algorithms.

This thesis aims to explore the cross-modal learning problem and propose a method to

solve an optimization problem in order to obtain a nonlinear embedding of samples.

For these reasons, a brief overview of multi-modal learning would be beneficial to

understand why multi-modal learning methods are useful in data analysis.

As indicated earlier, the great progress of technology in the last decades has provided

multi-modal data from multiple sources. For instance, face, fingerprint, signature or

iris information can help to identify a person [2]. Moreover, any content of a web

page can be illustrated via textual description, high-resolution images or videos [9].

Another example of multi-modal data can be given as the future transportation service

suggestion in [1]. Figure 1.1 demonstrates available data sources for a suggested

transportation system.

Figure 1.1: Multi-modal data needs of a future transportation system [1]
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Remote sensing and Earth observation systems also use multimodality. Light Detec-

tion and Ranging (LiDAR) and Synthetic Aperture Radar (SAR) technologies provide

topographic information such as elevation, 3-D structures of observed objects and sur-

face properties. LiDAR samples are especially used for measuring distance to objects

and generated through narrow pulsed laser. SAR images are constructed from the illu-

mination and the backscattering of electromagnetic waves. More accurate topological

information can be gathered via convenient fusion of LiDAR and SAR technologies

[10].

In order to have successful weather forecasting, meteorological data is monitored

with using rain gauges, radars, satellite-borne remote sensing devices. Hydrology,

agriculture, and aeronautical services directly take advantage of rain, snow, fog and

temperature information [11]. These suggest that multi-modal data can be quite useful

for some areas.

All given examples demonstrate that there usually exist multi-modal representations

of a sample. It provides a multi-modal learning algorithm to have various additional

information that a single-modal learning algorithm cannot have. Despite the benefits

of multi-modal data representations, there are also complicated challenges to be faced

with. A multi-modal learning survey in [12] emphasizes 5 considerable phenomena

that can be summarized as follows:

• Finding an efficient representation for multi-modal data without damaging its

structure is a tough issue. For example, image modality can be represented as a

signal, but text modality cannot. A text contains semantic structures to be taken

into account.

• Translating one modality to another modality is also an issue that needs to be

considered. An image can be described with more than one way.

• Obtaining direct intermodal relations leads to alignment problems for multi-

modal data.

• Using joint information between modalities may not be simple. Incomplete

data or noise may degrade the performance of joint information.
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• Transferring knowledge from one modality to another modality, called as co-

learning, is a challenging task due to missing annotations which may help the

training of a computational model in the other modality.

It can be inferred that missing samples may result in unexpected multi-modal data

representations. Therefore, a robust multi-modal learning algorithm requires an in-

terpolator to get rid of the effects of missing samples. Another point to consider is

that algorithms in the multi-modal learning literature endeavour to increase within-

class similarity and between-class separation using training samples only. It causes

missing samples to lead to more perturbation. Nevertheless, all sample space can be

covered approximately with the help of a robust interpolator.

Vural and Guillemot [13] indicate that a radial basis function (RBF) may increase

classification accuracy with the help of Lipschitz continuity. Their experimental re-

sults show that generalization of nonlinear supervised manifold algorithms may pre-

serve intra class structure and ease inter class separability not only for training data

but also for test data. Then, in [14], Örnek and Vural implement a nonlinear super-

vised dimension reduction algorithm through regular interpolators in a single modal

domain. According to their results, the joint optimization of training embeddings and

interpolator parameters via a smooth RBF interpolator produces better classification

results than well-known single modal algorithms.

The main purpose of this study is to learn efficient representations for the analysis

of multi-modal data samples. We propose a method that learns nonlinear projections

of multi-view data into a common domain, which preserves within-class similarities

while boosting between-class distances. First of all, an RBF interpolation mechanism

is proposed to maximize intra class similarity and inter class separation. Then, in-

terpolator parameters and training data embeddings to lower dimensions are obtained

via an iterative optimization process for each modality. In the test phase, misclas-

sification rates and retrieval performances are compared among several multi-modal

algorithms on popular multi-modal datasets. Experimental results reveal that widely

used linear multi-modal learning methods are not as successful as the proposed multi-

modal nonlinear smooth embedding to training method in classification and retrieval

applications.
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The distinctive features of the proposed multi-modal learning algorithm in compari-

son with the current methods in the literature can be explained as follows:

• Nonlinear embedding

• Generalization to all sample space

• Incorporation of the interpolator regularity in the learning objective

The proposed method can be easily applicable for small multi-modal data sets. For

some fields, the acquisition of the data is difficult or even not possible such as in

medical and military applications. The proposed method might be a powerful tool for

representing data in such domains.

1.2 Thesis Outline

The organization of the thesis is as follows: A few notable cross-modal learning

techniques in the literature are explained briefly and related examples are provided

in Chapter 2. Then, the definition of the multi-modal nonlinear supervised learning

problem and the proposed solution to this problem are examined in detail in Chapter 3.

In Chapter 4, various learning experiments conducted on different real-world datasets

are presented in order to measure and evaluate the algorithm performance. At the end,

a summary of the thesis study is given and possible recommendations are discussed

to improve this study in Chapter 5.
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CHAPTER 2

RELATED WORK

This chapter gives an overview of the trending approaches in the multi-modal learning

literature. Section 2.1 explains the fundamental principles of multi-modal learning

frameworks and gives a taxonomy of the current multi-modal learning approaches.

Section 2.2 discusses co-training algorithms and their essential properties. After that

Section 2.3 presents several multiple kernel learning methods and Section 2.4 demon-

strates various subspace learning-based approaches in the literature. Section 2.5 de-

scribes deep multi-modal learning methods. Then, Section 2.6 briefly overviews the

computation of nonlinear smooth embeddings in a single modality. This study has

made a significant contribution to our work. Finally, Section 2.7 discusses the limita-

tions of the previously mentioned algorithms and motivates the proposed multi-modal

learning algorithm.

2.1 Fundamentals of Multi-modal Learning

Multi-modal learning algorithms have additional training samples for the same input

data compared to single-modal learning algorithms. This may help the learning tech-

nique to achieve better performance in problems such as classification and regression

if extra information is used properly. Therefore, inter modality relationships should

be indicated efficiently. At this point, the “consensus” and “complementariness” con-

cepts can be considered as the backbone of multi-modal learning algorithms. The

consensus phenomenon mainly serves the maximization of cross modal data concur-

rency [2]. It decreases the disagreement between modalities and it provides improve-

ment in the accuracy of learning. Furthermore, in some cases, some modalities may
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include additional useful information. This can be expressed with the complemen-

tariness principle, which a single modal learning algorithm cannot have [2]. The

consensus and complementariness properties of multi-modal data will be analysed

further in the next sections of the chapter when various multi-modal learning algo-

rithms are discussed. The multi-modal learning approaches in the literature can be

classified as follows [2]:

• Co-training

• Multiple Kernel Learning

• Subspace Learning-based Approaches

• Deep Learning Methods

2.2 Co-training

Co-training allows each modality to be trained separately with correlated learners.

Although the parameters of distinct modalities are learnt individually, validation data

can be used in a back-propagation mechanism that results in smaller disagreement be-

tween modalities. It is an iterative learning process that provides consistent predictors

to the model. Earlier co-training algorithms notice that under the sufficiency, com-

patibility and conditional independence assumptions, training data can be grouped

successfully for a semi-supervised learning setting according to statements in [2].

Figure 2.1 illustrates a co-training mechanism for two modalities:

A study in [15] improved the co-training algorithm using Expectation Maximization

(EM) technique to assign probabilistic labels to unlabelled samples. Each modality

classifier iteratively uses the probabilities of class labels in Co-EM training. There-

fore, Co-EM may achieve better training performance even if the conditional inde-

pendence assumption is not met in a multi-modal dataset. Bayesian classifiers, which

are commonly used in Co-EM frameworks, reduce classification errors.

A probabilistic model for Support Vector Machine (SVM) was constructed in [16] in

order to get the powerful sides of the Co-EM algorithm. This leads to better classifi-

cation results for co-training algorithms in many classification problems.
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Figure 2.1: Co-training structure [2]

Co-regularization is another implementation of co-training. Assume two prediction

functions f 1 and f 2 are defined on two hypothesis spaces H1 and H2 respectively.

For given labelled samples (xi, yi)L and unlabelled samples (xi)U , co-regularization

aims to solve the following optimization problem:

(f 1
∗ , f

2
∗ ) = min

f1∈H1

f2∈H2

γ1
∥∥f 1
∥∥2
H1 +γ2

∥∥f 2
∥∥2
H2 +µ

∑
i∈U

[f 1(xi)−f 2(xi)]
2+
∑
i∈L

V (yi, f(xi)).

(2.1)

where V (.) denotes loss function for labelled data predictions. Optimization prob-

lem states that norms of the prediction functions for each modality needs to be small.

Co-regularization is provided with the third term in the optimization formula, which

indicates mutual agreement on unlabeled samples. Using individual prediction func-

tions for each modality, common predictor can be obtained as follows:

f∗(x) =
1

2

(
f 1
∗ (x) + f 2

∗ (x)

)
(2.2)

In the literature, there also exist co-regression algorithms which can be implemented

in co-training way. A regression algorithm that uses two kNN regressors is presented

to learn appropriate labels for unlabelled samples in [17]. Moreover, a study in [18]

tries to minimize the following function for co-regression problems:

Q(f) =
M∑
v=1

[ ∑
x∈Xv

V
(
y(x), fv(x)

)
+ ν ‖fv(.)‖2

]
+ λ

M∑
u,v=1

∑
z∈Z

V
(
fu(z), fv(z)

)
(2.3)
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where u and v denote indexes of modalities from 1 to M , f(.) states a prediction

function, V (.) indicates a loss function for labelled data predictions, z refers to unla-

belled samples, x refers to all samples and y(x) are given class labels.The first term

in the equation gives the loss between available labelled samples and the generated

predictors. The second term is used to decrease the norms of the predictors. The last

term imposes mutual agreement between prediction functions.

A multi-modal clustering approach is presented in [19] through k-means clustering.

First of all, k-means algorithm is applied to one modality. Then, class partition infor-

mation of each modality is transferred to other modalities iteratively. After the loss

function is minimized, multi-modal clustering is terminated.

Co-training technique is also used in graph based methods such as in [20]. Gaussian

process is applied to Bayesian undirected graph representation of all modalities.

Other interesting co-training algorithms in the multi-modal data sets are proposed in

[21], [22], and [23].

2.3 Multiple Kernel Learning

A single kernel function may not be adequate to attain the desired learning perfor-

mance. In order to deal with this issue, multiple kernel combinations are proposed.

Linear or nonlinear kernel combinations are quite popular techniques in multiple ker-

nel learning [2]. Figure 2.2 illustrates the kernel combination process.

Figure 2.2: Multiple kernel learning structure [2]
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For samples xi, xj , a unified kernel K(xi, xj), kernel functions Kk(xi, xj) and kernel

weights dk with k from modality 1 to modality M , multi-modal kernel combinations

can be produced with various methods [2]. Linear combination methods can be ex-

pressed as follows:

Direct summation: K(xi, xj) =
M∑
k=1

Kk(xi, xJ) (2.4)

Weighted summation: K(xi, xj) =
M∑
k=1

dkKk(xi, xJ) (2.5)

Restricted: K(xi, xj) =
M∑
k=1

dkKk(xi, xJ), where K ≥ 0, tr(K) ≤ c (2.6)

Locally combined: K(xi, xj) =
M∑
k=1

dk(xi)Kk(xi, xJ)dk(xj) (2.7)

There are also nonlinear combination methods for multi-modal kernel functions ac-

cording to [2]:

Exponential: K(xi, xj) = exp
(
−

M∑
k=1

dkx
T
i Akxj

)
(2.8)

Power: K(xi, xj) =
(
d0 +

M∑
k=1

dkx
T
i Akxj

)n (2.9)

where Ak denotes the affinity matrix of each modality and it can be constructed with

several ways to determine similarities.

Moreover, several multiple kernel learning approaches are presented in [24], [25],

[26], [27], [28], [29], [30], [31], [32], [33], and [34].

2.4 Subspace Learning

Subspace learning methods are based on finding suitable linear projections or trans-

formations that align samples from different modalities. Figure 2.3 shows a common

subspace representation for given data samples.

The well-known unsupervised subspace learning algorithm CCA (Canonical Correla-

tion Analysis) maximizes the correlation between modalities [2]. For a given data set

11



Figure 2.3: Subspace learning structure [2]

with two modalities X = [x1, ..., xN ] and Y = [y1, ..., yN ], the correlation coefficient

(ρ) between two modalities can be defined as follows in [35]:

ρ =
cov(wTxX,w

T
y Y )√

var(wTxX)var(wTy Y )
=

wTxCxywy√
(wTxCxxwx)(w

T
y Cyywy)

(2.10)

The main purpose of CCA to maximize ρ, but the scales of the projection directions

wx, wy do not affect ρ. Therefore, using (2.10), the optimization of CCA is reformu-

lated by [35] as follows:

max
wx,wy

ρ = max
wx,wy

wTxCxywy such that wTxCxxwx = 1, wTy Cyywy = 1 (2.11)

By applying Lagrange multipliers, the following equation can be obtained:

L(wx, wy, λx, λy) = wTxCxywy −
λx
2

(wTxCxxwx − 1)− λy
2

(wTy Cyywy − 1) (2.12)

Computing the derivatives of (2.12) with respect to wx and wy produces the following

outcomes:

Cxywy − λxCxxwx = 0 (2.13)

Cyxwx − λyCyywy = 0 (2.14)

Multiplying (2.13) with wTx and (2.14) with wTy from the left hand side results in the

following expression:

λyw
T
y Cyywy − λxwTxCxxwx = 0 −→ λy − λx = 0 −→ λx = λy (2.15)

12



wy can be calculated for an invertible Cyy by indicating λx = λy = λ:

wy =
1

λ
C−1yy Cyxwx (2.16)

Through (2.13) and wy, which is given in (2.16), the following equation is obtained:

CxyC
−1
yy Cyxwx = λ2Cxxwx (2.17)

The solution of (2.17) is the eigenvector that corresponds the largest eigenvalue. Thus,

wx needs to be obtained at first and then be normalized. After that wy can be calcu-

lated easily via (2.16). wy can be normalized with the constraints in (2.11). Finally,

the normalized projection vectors, wx and wy can be used to align the two modalities.

Alternative versions of CCA such as cluster CCA [36], multilabel CCA [37] and

three view CCA [38] have been proposed to improve the performance for different

data sets and various tasks; but all of them contain linear projections. Thereby, given

CCA based algorithms may produce good results in multi-modal data sets that are

suitable for linear transformations. There also exists a nonlinear extension of CCA,

which is called as kernel CCA [2]. However, kernel CCA representations may face

flexibility issues.

There are also other popular unsupervised learning algorithms like Bilinear Model

(BLM) [39] and Partial Least Squares (PLS) [40] for multi-modal data sets. Their

drawback is the inability to use the label information in case this is available.. On the

other hand, supervised multi-modal learning algorithms utilize class representations

so that more accurate results can be obtained. Multiview Fisher Discriminant Anal-

ysis (MFDA) is proposed to maximize the consensus of predicted class labels in dif-

ferent modalities [41]. Since it is suitable for data sets with two classes, an advanced

version of MFDA is developed with a hierarchical architecture [42]. Moreover, a La-

tent Dirichlet Allocation (LDA) system is designed to discriminate multi-modal data

samples by benefitting from domain information [43].

The study in [44] suggests that an ideal cross-modal learning algorithm should be su-

pervised, generalizable, multi-modal, efficient, kernelizable and domain independent.

For this reason, the authors of [44] introduce a generic method called as Generalized

Multiview Analysis (GMA) to learn a common subspace from a multi-modal frame-
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work. According to [44], the GMA approach starts with a joint optimization of two

projection directions as follows:

[v̂1, v̂2] = arg max
v1,v2

vT1 A1v1 + µvT2 A2v2

s.t. vT1 B1v1 = vT2 B2v2 = 1

(2.18)

where Ai and Bi with i ∈ {0, 1} are square symmetric matrices that respectively

represent within-class similarities and between-class differentiations. In (2.18), the

parameter µ is used to balance the weights of two optimization terms. In [44], sim-

plified version of (2.18) is obtained as follows by combining the constraints via a

parameter γ:

[v̂1, v̂2] = arg max
v1,v2

vT1 A1v1 + µvT2 A2v2

s.t. vT1 B1v1 + γvT2 B2v2 = 1, where γ =
tr(B1)

tr(B2)

(2.19)

The GMA algorithm claims that the projections of the ith samples in different modal-

ities ought to become as close as possible. Denoting the projections as α and the

samples as z, the projections can be calculated as in (2.20):

αi1 = vT1 z
i
1 and αi2 = vT2 z

i
2 (2.20)

In order to decrease the distances between multi-modal samples of the same class, the

covariance between the samples should be maximized. The following optimization

problem can be constructed to formulate this idea:

[v̂1, v̂2] = arg max
v1,v2

vT1 Z1Z
T
2 v2, where Zm =

[
z1m z2m · · · zjm

]
. (2.21)

Combining the individual problems in (2.19) and (2.21), the overall optimization

problem can be obtained as follows:

[v̂1, v̂2] = arg max
v1,v2

vT1 A1v1 + µvT2 A2v2 + 2βvT1 Z1Z
T
2 v2

s.t. vT1 B1v1 + γvT2 B2v2 = 1

(2.22)

Using matrix notation, optimization formula, which is given (2.22), can be written as
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follows: v̂1
v̂2

 = arg max
v1,v2

v1
v2

T  A1 βZ1Z
T
2

βZ2Z
T
1 µA2

v1
v2


s.t.

[
vT1 vT2

]B1 0

0 γB2

v1
v2

 = 1

(2.23)

A more compact form of (2.23) is the following:

v̂ = arg max
v

vTAv

s.t. vTBv = 1.

(2.24)

This leads to the generalized eigenvalue problem Ãv̂ = λB̃v̂ with square symmetric

matrices Ã and B̃. The solution of this closed form is the eigenvector which is relevant

with the largest eigenvalue of B−1A when B is an invertible matrix. If B is not full

rank, then dimension reduction or regularization techniques are needed to be applied

before the GMA algorithm.

Various linear projection methods in the literature can be derived from the GMA

structure according to [44]. These projections can be computed with the derivations

in Table 2.1:

Table 2.1: How to derive well known algorithms through GMA

Algorithm Ai Bi Zi Wi

GMPCA XiWiX
T
i I Xi Ii/Ni

CCA 0 XiWiX
T
i Xi Ii/Ni

BLM XiWiX
T
i I Xi Ii/Ni

PLS 0 I Xi not used

GMLDA XiWiX
T
i XiDiX

T
i Xi or Mi [W kl

i ]

GMMFA Xi(Sbi −Wbi)X
T
i Xi(Swi −Wwi)X

T
i Xi not used
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where;

Ii is the identity matrix for the modality i,

Ni is the number of samples in the modality i,

W kl
i =

1/N c
i , if Xk

i and X l
i are in the same class

0, otherwise

N c
i is the number of samples from class c in the modality i,

Mi is the matrix which contains class means in its columns ,

Di = I −Wi and i denotes the modality index,

The within-class compression matrix is;

W kl
wi =

1, if Xk
i and X l

i are in the same class

0, otherwise

The between-class separation matrix is;

W kl
bi =

1, if Xk
i and X l

i are in different classes

0, otherwise

Cross-modal retrieval applications should deal with how to measure the relevance

and how to select coupled features. Previously mentioned methods only measure the

relevance, while the recent method, which is called as JFSSL (Joint Feature Selection

and Subspace Learning), achieves feature selection and common subspace learning

simultaneously [3]. The JFSSL algorithm tries to obtain linear transformations for

different modalities by choosing relevant and irrelevant features while constructing a

multi-modal graph. The optimization problem, which is defined for JFSSL, can be

formulated as follows:

min
U1,··· ,Um

M∑
p=1

∥∥XT
p Up − Y

∥∥2
F

+ λ1

M∑
p=1

‖Up‖21 + λ2Ω(U1, · · · , UM) (2.25)

In (2.25), Up refers to projection matrices, Xp stands for the labelled data matrices, Yp

denotes the low-dimensional representations of Xp, Ω(.) is the loss function for the

joint graph and p indicates the modality index from 1 to M . λ1 and λ2 are parameters

16



that are used for the regularization of the optimization terms.

In order to minimize the projection errors among different modalities, the first term

is added to (2.25). The second optimization term describes the selection of relevant

and redundant features through the l21 norm. The last term in (2.25) is defined for

the multi-modal graph representation, which is generated from intra-modal and inter-

modal similarity relationships. For modalities p and q, the inter-modal similarity can

be shown with a matrix W pq as follows:

W pq
ij =

1, if xpi has similar semantics to xqj

0, otherwise
(2.26)

Neighbouring samples in the original space need to be as close as possible after pro-

jections. Hence, the following intra-modal similarity matrix is introduced with a kNN

graph:

W p
ij =

exp
(
−
∥∥xpi − xpj∥∥2 /2σ2

)
, if xpi and xpj are linked with kNN

0, otherwise
(2.27)

Using (2.26) and (2.27), the overall similarity matrix can be written as follows:

W =


βW 1 W 12 · · · W 1M

W 21 βW 2 · · · W 2M

...
... . . . ...

WM1 WM2 · · · βWM

 , where β balances two similarities. (2.28)

A joint graph can be constructed with the overall similarity and projected data samples

as follows:

Ω(U1, · · · , UM) =
1

2

N∑
i=1

N∑
j=1

Wij ‖fi − fj‖2 = Tr(FLF T ) (2.29)

where N indicates the number of samples, L represents the graph Laplacian matrix

and can be calculated as L = D −W . The diagonal degree matrix, D, contains the

sums of the rows in W . The projected data is F = [UT
1 X1 · · ·UT

MXM ].

In order to obtain the projection vectors iteratively, the l21 norm can be relaxed with

an auxiliary vector rp which has the ith element rip =
(
2
√∥∥uip∥∥22 + ε

)−1. Thus, the
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overall optimization can be written as follows:

min
U1,··· ,Um

M∑
p=1

∥∥XT
p Up − Y

∥∥2
F

+ λ1

M∑
p=1

Tr
(
UT
p RpUp

)
+λ2

M∑
p=1

M∑
q=1

Tr
(
UT
p XpLpqX

T
q Uq

)
, where Rp = diag(rp)

(2.30)

The term Lpq in (2.30) implies the graph Laplacian matrix. It is obtained from the

inter-modal similarity matrix, Wpq, which is introduced in (2.26).

Figure 2.4 illustrates the joint feature selection and subspace learning mechanism on

the multi-modal data set, which includes image and text samples.

Figure 2.4: General architecture of the JFSSL algorithm [3]

Moreover, another graph based method was presented in [4]. This method endeav-

ours to obtain a low-dimensional smooth embedding of all modalities at the same

time. The objective function of the multi-modal spectral embedding can be stated as

follows:

arg min
Y,α

M∑
i=1

αriTr
(
Y L(i)

n Y
T
)

s.t. Y Y T = I and
M∑
i=1

αi = 1,

where αi ≥ 0 for the modality index i from 1 to M.

(2.31)

Y points out the low-dimensional embedding of the multi-modal data X . L(i)
n indi-

cates the normalized graph Laplacian matrix of the ith modality and can be obtained
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asL(i)
n = I−

(
D(i)

)(−1/2)
W (i)

(
D(i)

)(−1/2). The similarity matrix is computed through

the Gaussian kernel function.

Figure 2.5 explains the overall structure of multi-modal spectral embedding with

graph Laplacians.

Figure 2.5: Multi-modal spectral embedding overview [4]

In the literature, there exists a multi-modal metric learning algorithm [45], which

aims to keep similar pairs close and dissimilar pairs away from each other while

maintaining the inner characteristics. Furthermore, a multi-modal matrix factoriza-

tion technique [46] was proposed to solve the following optimization problem:

min
U(v),V (v)

V ∗≥0

M∑
v=1

∥∥∥X(v) − U (v)
(
V (v)

)T∥∥∥2
F

+
M∑
v=1

λv
∥∥V (v)Q(v) − V ∗

∥∥2
F (2.32)

where v is the modality index from 1 toM , Q(v) is produced with the constraint of the

column sums of U (v), the term λv is used as the balancing parameter in the optimiza-

tion. The main goal of this algorithm is to find the best approximation of multi-modal

data samples such that X(v) ≈ U (v)
(
V (v)

)T . The approximation provides the reduced

data matrix, V ∗.

Additionally, several subspace learning algorithms were presented in [47], [48], [49]

and [50] in order to decrease the effects of the noise, which are caused from real world

data samples.
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2.5 Deep Learning

Remarkable developments in hardware technologies, especially in GPU (Graphical

Power Unit), has allowed researchers to build complex computational models that

process data in multiple layers [51]. These powerful models produce successful clas-

sification, recognition and analysis results on big data sets with high dimensions.

In [52], The Term Frequency - Inverse Document Frequency (TFIDF) feature, the

context feature, the low-dimensional graph node representation feature and the times-

tamp feature are used as inputs to a Multi-Entry Neural Network (MENET) in order

to detect geolocation of Twitter users. Furthermore, correlation learning errors and

representation learning errors are minimized concurrently thanks to hidden represen-

tations of different modalities in [53].

A study in [54] suggests that the proposed convolutional neural network and the natu-

ral language model efficiently obtain label information even if the input data is noisy.

Another research in [55] claims that in order to make hidden representations aligned

for two different modalities, regularized cross-modal convolutional networks can be

implemented.

Recently developed deep learning algorithms for multi-modal frameworks can be

found in [56], [57], [58], [59] and [60].

2.6 Nonlinear Embeddings with Smooth Interpolators

In [14], a nonlinear supervised embedding technique is proposed to provide the Lip-

schitz continuity to the interpolator, decrease the distances between neighbouring

samples from the same classes, and increase the separation between samples from

different classes. The proposed optimization problem is shown in (2.33)

min
Y,σ

Tr
(
Y TLwY

)
− µ1Tr

(
Y TLbY

)
+ µ2Tr

(
Y TΨ−2Y

)
+ µ3/σ

2,

s.t. Y TY = I.

(2.33)

According to the experimental results in [14], the proposed learning method has been

quite successful compared to other single modality learning approaches. Therefore,
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we consider this algorithm as a starting point and extend this framework to a multi-

modal setting.

2.7 Discussion

The alignment of different modalities via linear projections or transformations as in

subspace learning might have limitations in real data sets where different modalities

are weakly linked. In particular, when the data from different modalities have sig-

nificantly dissimilar geometric structures, linear methods may fall short of providing

effective joint representations since they mostly conserve the geometry of the individ-

ual modalities. Kernel methods provide nonlinear representations that may improve

some of these shortcomings; however, the resulting representations might still lack in

flexibility in certain scenarios. Deep learning algorithms using cross-modal autoen-

coders and CNNs provide powerful nonlinear representations achieving impressive

performance in retrieval problems [61], [55], [53]. Meanwhile, these methods often

need much larger training data sets.

The recent study in [13] focuses on nonlinear dimensionality reduction and proposes

generalization bounds on the performance of classification. It is shown that in addi-

tion to increasing the separation between different classes and preserving the within-

class similarity, another important condition that must be satisfied for successful gen-

eralization to new test data is that the interpolation function extending the nonlinear

embedding to the whole data space must be sufficiently regular. The regularity of

the interpolator is characterized in terms of its Lipschitz continuity in [13]. These re-

sults have been successfully applied in the single-modal supervised manifold learning

problem in [14].

In this thesis, we build on the theoretical results in [13] and propose a nonlinear

multi-modal dimensionality reduction algorithm for cross-modal classification and

retrieval, which aims to achieve flexibility and robustness in the learning via the non-

linearity of the representations. We compute a nonlinear embedding of the training

samples from different modalities, where we aim to increase the separation between

different classes, preserve the within-class geometric structure of each modality, and
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also align the same-class samples from different modalities. The nonlinear embed-

ding of the training samples is extended to the whole space via an RBF (Radial Ba-

sis Function) interpolator. In line with the theoretical findings of [13], we consider

the Lipschitz regularity of the interpolation function in our optimization objective

as well. The resulting objective function is minimized with an iterative optimiza-

tion procedure, where the nonlinear embedding coordinates are learnt jointly with

the Lipschitz-continuous interpolator parameters. Experimental results in multi-view

face recognition and image-text cross-modal retrieval applications show that the pro-

posed method gives quite satisfactory performance in comparison with state-of-the-

art algorithms.
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CHAPTER 3

PROPOSED METHOD

3.1 Notation and Theoretical Background

We first set the notation and briefly summarize the theoretical findings underlying our

method. Let X(p) ∈ RN(p)×d(p) denote the training data matrix of modality p, each

row of which is a data sample x(p)i . Here N (p) is the number of samples in modality

p, and d(p) is the dimension of the samples in modality p. The vectors x(1)i , . . . , x
(p)
i

are considered to represent observations of the same data sample xi under different

modalities. Uppercase letters (e.g. X) and lowercase letters (e.g. x) respectively

indicate matrices and vectors. The notation tr(A) stands for the trace of a matrix A,

and Aij indicates its entry in the i-th row and j-th column. C(x
(p)
i ) refers to the class

label of the sample x(p)i .

Given the training samples X(p) from modalities p = 1, . . . , V , we would like to

compute embeddings Y (p) ∈ RN(p)×m of the training samples, such that each training

sample x(p)i ∈ Rd(p) is mapped to a vector y(p)i ∈ Rm in a common space of dimension

m. Our main purpose is to find an embedding that can be successfully generalized

to initially unavailable test samples of unknown class for classification or retrieval

purposes. We propose to generalize the embedding of the training samples to the

whole data space through interpolation functions f (p) : Rd(p) → Rm, so that each

training sample is mapped to its embedding as f (p)(x
(p)
i ) = y

(p)
i .

The study in [13] proposes a generalization bound for supervised nonlinear dimen-

sionality reduction in a single-modal setup. Let us first recall the definition of a

Lipschitz-continuous function.

Definition 1. A function f : Rd → Rm is Lipschitz continuous with constant L > 0 if
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for any u, v ∈ Rd

‖f(u)− f(v)‖ 6 L ‖u− v‖.

Assume a function f is differentiable, satisfies the Lipschitz continuity and defined

as f : R → R. Then, Lipschitz condition can be expressed as follows according to

[62]:

‖f(u)− f(v)‖ 6 L ‖u− v‖ =⇒
∣∣∣∣f(u)− f(v)

u− v

∣∣∣∣ 6 L

=⇒
∣∣∣∣f(u+ h)− f(u)

h

∣∣∣∣ 6 L where v = u+ h

If h → 0, then f ′(u) 6 L. It means that the Lipschitz constant bounds the deriva-

tive of the function. However, this limit cannot be established if the function is not

differentiable. Even if the function is not differentiable, the Lipschitz continuity theo-

rem indicates that the function, which satisfies the Lipschitz continuity, cannot highly

fluctuate.

The study in [13] considers a single-modal setting where the training sample xi ∈ Rd

is mapped to its embedding yi ∈ Rm in a supervised way. A test sample x is then

classified by first mapping it to Rm with an interpolation function f : Rd → Rm, and

then finding the estimate Ĉ(x) of its class label via nearest-neighbour classification

in Rm. The main result in [13] is summarized as follows:

Theorem 1. Let X = {xi}Ni=1 ⊂ Rd be a set of training samples and Y = {yi}Ni=1 be

an embedding of X in Rm. Let γ > 0 and Aδ be parameters such that

‖yi − yj‖ < Aδ, if ‖xi − xj‖ 6 2δ and C(xi) = C(xj),

‖yi − yj‖ > γ, if C(xi) 6= C(xj).

For given ε > 0 and δ > 0, let the Lipschitz-continuous interpolator f with Lipschitz

constant L satisfy

Lδ +
√
mε+ Aδ 6

γ

2
. (3.1)

Then the probability of correctly classifying a test sample x from class c is lower

bounded as

P
(
Ĉ(x) = c

)
> 1− e−O(N) − 2me

−O
(
N ε2

L2δ2

)
. (3.2)
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This result intuitively suggests the following: For successful classification, a nonlin-

ear embedding should have sufficiently small distance (Aδ) between nearby samples

from the same class, and sufficiently large separation (γ) between different classes.

Meanwhile, the Lipschitz constant L of the interpolator should also be sufficiently

small so that the condition in (3.1) can be satisfied. Under these conditions, the prob-

ability of correct classification exponentially approaches 1 as the number of samples

increases. Although Theorem 1 addresses a single-modal setting, the same princi-

ples apply to multi-modal problems as well, and we thus consider its findings in our

learning objective.

3.2 Problem Formulation

We can now formulate our multi-modal learning problem in the light of Theorem 1,

where we have the following goals:

Lipschitz regularity of the interpolator. We extend the embeddings of training

samples to the data space with RBF interpolation functions of the form f (p)(x) =

[f
(p)
1 (x) . . . f

(p)
m (x)] for each modality p = 1, . . . , V , where the k-th component of

f (p)(x) is

f
(p)
k (x) =

N(p)∑
i=1

C
(p)
ik φ(p)(‖x− x(p)i ‖). (3.3)

Here φ(p)(r) = e−r
2/(σ(p))2 is a Gaussian RBF kernel with scale parameter σ(p) and

C
(p)
ik are the interpolator coefficients. A Lipschitz constant for Gaussian RBF interpo-

lators has been proposed in [14], which implies that f (p)(x) is Lipschitz-continuous

with constant

L(p) =
√

2e−
1
2

√
N (p)(σ(p))−1

∥∥C(p)
∥∥
F

(3.4)

where C(p) is the coefficient matrix with entries given by C(p)
ik , and ‖ · ‖ denotes the

Frobenius norm. The interpolator coefficients can be easily obtained by fitting the

embeddings Y (p) to the training data X(p) as follows:

C(p) = (Ψ(p))−1Y (p) (3.5)
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where Ψ(p) is the matrix consisting of the values of the RBF kernels through

Ψ
(p)
ij = φ(p)(‖x(p)i − x

(p)
j ‖). (3.6)

Hence, in order to ensure that the interpolators of all modalities have small Lipschitz

constants, for each modality p = 1, . . . , V , we propose to minimize∥∥C(p)
∥∥2
F

= ‖(Ψ(p))−1Y (p)‖2F = Tr
(
Y (p)T (Ψ(p))−2 Y (p)

)
(3.7)

in addition to the minimization of the kernel scale term (σ(p))−1.

Within-class compactness and between-class separation. The total weighted dis-

tance between the embeddings of samples from the same class is commonly formu-

lated as
N(p)∑
i,j=1

(W (p)
w )ij ‖y(p)i − y

(p)
j ‖2 = Tr

(
Y (p)TL(p)

w Y (p)
)

(3.8)

in the manifold learning literature. Here W (p)
w is a weight matrix with entries repre-

senting the similarity between the data samples as follows:

(W (p)
w )ij =

exp
(
− ‖x

(p)
i −x

(p)
j ‖

2

(θ(p))2

)
, if x(p)i and x(p)j are from the same class,

0, otherwise
(3.9)

where θ(p) is a scale parameter. Defining the diagonal degree matrixD(p)
w with i-th di-

agonal entry given by
∑

j(W
(p)
w )ij , the matrix L(p)

w denotes the within-class Laplacian

given by:

L(p)
w = D(p)

w −W (p)
w

(3.10)

The term in (3.8) hence imposes nearby samples x(p)i , x(p)j from the same class to be

mapped to nearby coordinates. The graph Laplacian term is frequently used in the

manifold learning with unsupervised ([63]) and supervised ([64], [65], [66], [67] ,and

[68]) manner.

Similarly, in order to enhance the separation between the samples from different

classes, for each modality p = 1, . . . , V , we maximize

N(p)∑
i,j=1

(W
(p)
b )ij ‖y(p)i − y

(p)
j ‖2 = Tr

(
Y (p)TL

(p)
b Y (p)

)
(3.11)
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where L(p)
b = D

(p)
b −W

(p)
b is the between-class Laplacian matrix obtained from the

weight matrix W (p)
b . The only nonzero entries of W (p)

b are given by (W
(p)
b )ij = 1

when x(p)i and x(p)j are from different classes, and D(p)
b is the diagonal between-class

degree matrix with (D
(p)
b )ii =

∑
j(W

(p)
b )ij .

Alignment of different modalities. In learning multi-modal representations, an im-

portant purpose is to align different modalities in a suitable way. In computing non-

linear embeddings, we aim to map similar samples from different modalities p, q to

nearby points by minimizing:

N(p)∑
i=1

N(q)∑
j=1

∥∥∥y(p)i − y
(q)
j

∥∥∥2
2
(W (pq)

w )ij = Tr
(
Y (p)TL(pq)

w Y (p)
)

(3.12)

while the separation between samples from different classes from modalities p, q are

increased by maximizing:

N(p)∑
i=1

N(q)∑
j=1

∥∥∥y(p)i − y
(q)
j

∥∥∥2
2
(W

(pq)
b )ij = Tr

(
Y (p)TL

(pq)
b Y (p)

)
(3.13)

Here the matrixW (pq)
w represents the similarity relation between cross-modal samples

and the matrix W (pq)
b indicates the separation between modalities.

The matrix W (pq)
w can be calculated as follows:

(W (pq)
w )ij =

exp
(
−
∥∥∥x(p)i − x(p)j ∥∥∥2 /2σ2

)
, if x(p)i and x(q)j from the same class

0, otherwise
(3.14)

where x(p)j is the cross-modal pair of x(q)j . Indeed, a data sample can be described

as x(p)j in the modality p and represented as x(q)j in the modality q. For example, the

fingerprint image and the voice of a person can be a cross-modal pair. We cannot

measure the distances directly between image samples and audio samples because of

the fact that they are different features or signals. Therefore, we use the cross-modal

pairs and class relationships to compute the similarity between modalities.

The matrix W (pq)
b can be found as follows:

(W
(pq)
b )ij =

1, if x(p)i and x(q)j are from different classes,

0, otherwise
(3.15)
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The inter-modal Laplacian matrices L(pq)
w and L(pq)

w can be obtained from the inter-

modal weight matrices W (pq)
w and W (pq)

b as follows:

L(pq)
w = D(pq)

w −W (pq)
w and L(pq)

b = D
(pq)
b −W (pq)

b (3.16)

where D(pq)
w is the diagonal inter-modal within-class degree matrix with (D

(pq)
w )ii =∑

j(W
(pq)
w )ij and D(pq)

b is the diagonal inter-modal between-class degree matrix with

(D
(pq)
b )ii =

∑
j(W

(pq)
b )ij .

Overall problem. All these objectives can be formulated in the following overall

optimization problem

minimize
{Y (p)}, {σ(p)}

V∑
p=1

{
tr
(
Y (p)TL(p)

w Y (p)
)
− µ1 tr

(
Y (p)TL

(p)
b Y (p)

)
+µ2 tr

(
Y (p)T (Ψ(p))−2 Y (p)

)
+ µ3 (σ(p))

−2
}

+
V∑
p=1

∑
q 6=p

{
µ4Tr

(
Y (p)TL(pq)

w Y (p)
)
− µ5Tr

(
Y (p)TL

(pq)
b Y (p)

)}
(3.17)

subject to Y (p)TY (p) = I , where µ1, . . . , µ5 are positive weight parameters, I is the

identity matrix, and the optimization constraint Y (p)TY (p) = I is for the normaliza-

tion of the learnt coordinates.

3.3 Solution of the Optimization Problem

We first rewrite the problem in (3.17) in a more compact form. Let

Ỹ =
[
y
(1)
1 y

(1)
2 · · · y

(1)
N1

y
(2)
1 y

(2)
2 · · · y

(2)
N2
· · · y(p)Np

· · · y
(V )
1 y

(V )
2 · · · y(V )

NV

]T
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denote the matrix containing the embeddings from all modalities. Let us also define

Ψ̃ =



(
Ψ(1)

)−2
0 · · · 0

0
(

Ψ(2)
)−2

· · · 0
...

... . . . ...

0 · · · · · ·
(

Ψ(V )
)−2



L̃w =


Lw

(1) 0 · · · 0

0 Lw
(2) · · · 0

...
... . . . ...

0 · · · · · · Lw
(V )

 , L̃b =


Lb

(1) 0 · · · 0

0 Lb
(2) · · · 0

...
... . . . ...

0 · · · · · · Lb
(V )


Next, let W̃cw and W̃cb denote the cross-modal within-class and between-class weight

matrices obtained, respectively, by tiling the matrices W (pq)
w and W (pq)

b in their (p, q)-

th block.

W̃cw =



0 W 12
w W 13

w · · ·W 1V
w

W 21
w 0 W 23

w · · ·W 2V
w

...
... . . . ...

W V 1
w W V 2

w · · · 0


, W̃cb =



0 W 12
b W 13

b · · ·W 1V
b

W 21
b 0 W 23

b · · ·W 2V
b

...
... . . . ...

W V 1
b W V 2

b · · · 0


We can then define the corresponding Laplacian matrices L̃cw = D̃cw − W̃cw and

L̃cb = D̃cb−W̃cb, where D̃cw and D̃cb are the corresponding diagonal degree matrices

obtained by summing up the entries of W̃cw and W̃cb in each row. Letting

A = L̃w − µ1L̃b + µ2Ψ̃ + µ4L̃cw − µ5L̃cb

the problem in (3.17) can be rewritten as

minimize
Ỹ , {σ(p)}

tr(Ỹ TAỸ ) + µ3

V∑
p=1

(σ(p))
−2
, subject to Ỹ T Ỹ = I. (3.18)

The above problem is not jointly convex in Ỹ and {σ(p)}, hence it is not easy to find

its global optimum. We minimize the objective function with an iterative alternating

optimization scheme, where we first optimize Ỹ by fixing {σ(p)}, and then optimize

{σ(p)} by fixing Ỹ in each iteration as follows:
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Optimization of Ỹ : When {σ(p)} are fixed, the optimization problem in (3.18) be-

comes

minimize
Ỹ

tr(Ỹ TAỸ ) subject to Ỹ T Ỹ = I. (3.19)

The solution of this problem is given by the m eigenvectors of the matrix A corre-

sponding to its smallest m eigenvalues.

Optimization of {σ(p)}: Fixing Ỹ , the problem (3.18) becomes

minimize
{σ(p)}

µ2tr
(
Ỹ T Ψ̃Ỹ

)
+ µ3

V∑
p=1

( 1

σ(p)

)2
. (3.20)

Note that the first term in the objective depends on the kernel scale parameters {σ(p)}
through the entries of the kernel matrix Ψ̃. Due to the block diagonal structure of {Ψ̃}
and the separability of the second term, the objective (3.20) can be decomposed into

V objectives, each one of which is a function of σ(p), for p = 1, . . . , V . We minimize

these objective functions one by one, by optimizing one scale parameter σ(p) at a time

through exhaustive search.

The outline of the proposed algorithm can thus be summarized as follows:

Algorithm Multi-modal Nonlinear Supervised Embedding (MNSE)
1: Input:

Training data matrix X(p)

Training data labels

2: Initialization:

Obtain the graph Laplacian matrices L̃w, L̃b, L̃cw, and L̃cb,

Assign weight parameters {µ1, µ2, · · · , µ5}, and initial kernel scales σ(p)

3: repeat

4: Compute the nonlinear embeddings Y (p) through (3.19) by fixing σ(p)

5: Compute the kernel scale parameters σ(p) through (3.20) by fixing Y (p)

6: until the maximum number of iterations or the convergence of the objective

7: Output:

Kernel coefficients matrix C(p) =
(
Ψ(p)

)−1
Y (p)

Kernel scale parameters σ(p) and projected training data Y (p)

Nonlinear embeddings are in the form y = f(x). The goal of the proposed algorithm
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is to obtain the optimum embedding function f(.). The proposed algorithm directly

optimizes the embeddings y through the optimum embedding function. Therefore, the

proposed method is nonlinear. On the other hand, linear embeddings are in the form

y = P Tx. The main aim of a linear embedding is the optimization of the projection

matrix P instead of the embeddings y.

3.4 Convergence of the Algorithm

Definition 2. A matrix M is positive semi-definite, if it is symmetric (n × n) and

satisfies the following property:

vTMv ≥ 0,∀v ∈ Rn

If the weight parameters µ1 and µ5 are chosen sufficiently small, the matrix A be-

comes positive semi-definite by Theorem 2. In this case the objective function is

guaranteed to converge since it is nonnegative, and both updates on Ỹ and {σ(p)}
reduce it.
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CHAPTER 4

EXPERIMENTAL RESULTS

4.1 Data Sets Used In the Experiments

We tried our proposed solution on several frequently used multi-modal data sets and

compared classification and retrieval results with some state-of-the-art methods in the

multi-modal learning literature. These data sets can be explained as follows:

• MITCBCL face images data set: This data set includes 3240 face images,

which were captured and published by MIT University CBCL Community

[69]. The dataset contains face images of 10 participants captured under 36

illumination conditions and 9 different pose angles. We have conducted the

classification experiments on images with frontal and profile poses, which are

considered to represent two different modalities. Some sample images of two

different participants in both modalities are shown in Figure 4.1.

(a) Participant2 - Modality1 (b) Participant2 - Modality2

(c) Participant5 - Modality1 (d) Participant5 - Modality2

Figure 4.1: Sample face images from the MITCBCL data set

• Wikipedia image-text pair data set: The retrieval experiments are done on
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the Wikipedia image-text data set [70]. The data set contains 2866 image-

text pairs describing the contents of the articles, which are categorized into 10

classes. 128-dimensional SIFT histograms are used in the image modality, and

10-dimensional text features obtained with a latent Dirichlet allocation model

are used for the text modality [71], [72]. Several samples in the Wikipedia data

set are given in Figures 4.2 and 4.3.

(a) Category "war" (b) Category "geography"

(c) Category "art" (d) Category "sport"

Figure 4.2: Sample Pascal VOC images

Figure 4.3: Sample tag for image (d) in Figure 4.2
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• Pascal VOC 2007 data set: It is a challenging image-text data set that is con-

structed from the various feature types such as the Gist vectors of the images

and the number of words used in the texts [73]. There exists 5011 training sam-

ples and 4952 test samples in overall set. Nevertheless, we used the images that

contain only one object in the experiments. Thus, all data set was reduced to

2808 training samples and 2841 test samples for each modality.

The data set includes 20 different object classes. A few Pascal VOC 2007 data

samples are shown in Figure 4.4.

(a) Tags: person(x5), horse(x5), tree (b) Tags: person, car

(c) Tags: person, baby carriage (d) Tags: table, chair(x6), rug, laptop, door

Figure 4.4: Sample Pascal VOC 2007 images and corresponding tags

4.2 Image Classification Experiments

The image classification experiments are conducted on the MIT CBCL face images

data set. 360 frontal images are used as Modality 1 samples and 360 profile images are

used as Modality 2 1 samples. In the training phase, firstly, K-nearest neighbourhood

graphs are constructed for each modality and the graph Laplacians are found. Then,
1 "Modality" and "view" have equivalent meanings in the thesis

35



the embeddings of the data samples in the modalities are computed with the proposed

MNSE algorithm. Obtained kernel functions are used to project the training and the

test samples to another domain, which has lower dimension than the original domain.

The NN classifiers are learned through the projected training samples and the class

labels. The trained classifiers and the projected test samples are used to estimate the

class labels of the test samples. Finally, the estimated class labels are compared to the

true class labels of the test samples to obtain the misclassification error rates.

4.2.1 The effect of the algorithm parameters on the classification performance

The following parameters may have an impact on the algorithm performance:

• Number of iterations

• Weight parameters (µ1, µ2, ..., µ5)

• Embedding dimension

In order to analyse the algorithm performance, 100 training and 260 test samples

were used for each modality. Firstly, we studied the evolution of the misclassification

error throughout the iterations of the optimization algorithm. The variation of the

optimization objective function throughout the iterations can be seen in Figure 4.5.

The term "update" indicates update of the embeddings (Y ) and update of the kernel

scale parameter (σ) so that there exists two updates in each algorithm iteration.

Figure 4.5 indicates that the overall objective function is a nonincreasing function for

each algorithm iteration. This confirms that our iterative algorithm works efficiently

to solve the established optimization problem. The updates on both the embeddings

(Y ) and the kernel scale parameter (σ) ensure that the overall cost decrease or remain

constant.

Misclassification errors of the modalities are illustrated in Figure 4.6 for each algo-

rithm iteration.

Figure 4.6 shows that the MNSE algorithm rapidly converges to its optimum point

for each modality. This result is consistent with the results in Figure 4.5, because of

36



1 2 3 4 5 6 7 8 9 10

Iteration

-444

-442

-440

-438

-436

-434

-432

O
b
j
e
c
t
i
v
e
 
(
J
)

(a) Objective vs algorithm iteration

0 2 4 6 8 10 12 14 16 18 20

Update

-450

-400

-350

-300

-250

-200

O
b
j
e
c
t
i
v
e
 
(
J
)

(b) Objective vs each update of the algorithm

Figure 4.5: Objective vs algorithm iteration for the MIT CBCL face data set
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Figure 4.6: Iteration vs misclassification error for the MIT CBCL face data set

the fact that the decrease in the overall cost function also leads to a decrease in the

misclassification error. Thus, it can be inferred that the objective function is indeed

well representative of the classification performance.

Next, the effects of the weight parameters are studied in Figures 4.7 and 4.8. Since it

is quite difficult to display the effects of the weight parameters on one plot at the same

time, pairwise effects are analysed independently in 3-D graphs. Moreover, values of

the weight parameters are assigned from the set {10−3, 10−2, 10−1, 1, 101, 102, 103}.

Figure 4.7 shows the misclassification errors for different values of the parameters

µ2 and µ3 when other algorithm parameters are constant. Values of the other weight
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parameters µ1, µ4, and µ5 are taken as 102, 1, and 102 respectively for this experiment.

(a) Modality 1 (b) Modality 2

Figure 4.7: Weight parameters (µ2, µ3) vs misclassification error for the MIT CBCL

face data set

Figure 4.7 indicates that the weight parameter for the kernel function norm constraint

(µ2) should be low, but the weight parameter for the kernel scale parameter constraint

(µ3) should be close to 1. This can be explained with the significant differences in

the orders of magnitudes of these terms. An appropriate assignment of these weight

parameters basically aims to balance the orders of the magnitudes.

Figure 4.8 demonstrates the misclassification errors for different values of the param-

eters µ4 and µ1-µ5 when other algorithm parameters are constant. Weight parameters

for intra and inter modalities between class separations (µ1-µ5) are chosen as exactly

the same, because between class separation matrices are constructed in a same way.

Remaining weight parameters µ2, and µ3 are taken as 10−2 and 1 respectively for this

experiment.

Figure 4.8 indicates that the weight parameter (µ4) for the inter-modal within-class

similarity of modalities should be in the interval [1, 101] and the weight parameters

(µ1, µ5) for the between-class discrimination of modalities should be high. This result

suggests that between-class discrimination terms should be dominant over within-

class similarity terms for this data set. This may be caused by the fact that within-class

scattering is high for the data set. Therefore, our algorithm tends to perform better
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(a) Modality 1 (b) Modality 2

Figure 4.8: Weight parameters (µ1, µ4, µ5) vs misclassification error for the MIT

CBCL face data set

when the distances between class means are increased. Another important outcome

of this experiment is that weights of the intra-modal and the inter-modal within-class

similarities can be taken as equal in the optimization.

Reducing the dimensions of the feature vectors by compromising on the minimum

loss of information is one of the important goals of the proposed algorithm. Thereby,

choosing a suitable dimension value as an algorithm input should be taken into ac-

count carefully. Figure 4.9 shows the relationship between the embedding dimension

and the misclassification error.

From Figure 4.9, it can be understood that the MNSE algorithm works well at lower

dimensions for the MIT CBCL face data set. The smallest dimension value that yields

a reasonable misclassification error in Figure 4.9 can be observed as 9. Achieving

high classification accuracy at low dimensions is also helpful as it decreases the com-

putational load. For these reasons, the embedding dimension is chosen as 9 during

the experiments.

For the MIT CBCL face images data set, there exist 10 classes and the optimum

embedding dimension is obtained as 9. This suggests that the optimum embedding

dimension may be expected to be close to the number of classes for the data set.
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Figure 4.9: Embedding dimension vs misclassification error for the MIT CBCL face

data set

4.2.2 The MNSE algorithm behaviour on the MIT CBCL face images data set

During the algorithm iterations, alternating optimization of the kernel scale parameter

is made in order to determine the proper kernel scale parameters for each modality.

Figure 4.10 demonstrates the relationship between the kernel scale parameter and the

objective function when embeddings are fixed.
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Figure 4.10: Kernel scale parameters and corresponding objective functions for the

MIT CBCL face data set

It can be understood from Figure 4.10 that a suitable value for the kernel scale pa-
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rameter σ can be found through a basic search in an interval. This is the result from

the fact that any increase in σ decreases the cost of the kernel scale parameter in the

overall objective, but it increases the cost of the kernel function norm and vice versa.

The appearances of the within-class similarity and the between-class dissimilarity

matrices for the reduced MIT CBCL face training data set are shown in Figure 4.11.
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(d) Between class separation of modality 1 and

modality 2

Figure 4.11: Intra and inter modality class relationships of the MIT CBCL face im-

ages

Figure 4.11 presents the block-diagonal affinity matrices constructed from class-ordered

training samples. Intra modality similarity relationships for each modality are com-

puted from a Gaussian distance metric so that if a suitable scale parameter is chosen,
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the white and gray areas are distributed evenly in the similarity matrix. This situation

can be observed in Figure 4.11a. In order to represent the inter modality similarity

relationships, one-to-one correspondences between modality 1 and modality 2 are

used. Figure 4.11b illustrates the top right block diagonals showing the within-class

similarities between modalities 1 and 2, which are constructed from the within-class

similarity relations in modality 2. Similarly, the bottom left block diagonal matrices

show the within-class similarities between modalities 1 and 2, constructed using the

within-class similarity relations in modality 1.

Similar observations can be made for the between-class separation relationships of

modalities. Instead of using a Gaussian distance metric, a constant value, i.e. 1, is

directly assigned for the samples which are not in the same classes. Thus, the weight

matrix in Figure 4.11c is obtained, which contains only black and white areas. Like in

the within-class similarity relationships, block diagonal matrices are observed when

training samples are ordered with respect to classes. The same method as in the

inter modality within-class similarity is applied to build the inter modality between-

class relationships. The resulting inter modality between-class dissimilarity matrices

can be seen in Figure 4.11d. The embeddings of the training and test samples are

demonstrated in Figure 4.12.

Furthermore, Figure 4.13 and Figure 4.14 illustrate the embedding results of the other

algorithms.
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(b) Embeddings of the modality 2 training sam-

ples coloured with respect to the class labels
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(c) Embeddings of the modality 1 test samples

coloured with respect to the true class labels
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(d) Embeddings of the modality 2 test samples

coloured with respect to the true class labels
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(e) Embeddings of the modality 1 test samples

coloured with respect to the estimated class labels
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(f) Embeddings of the modality 2 test samples

coloured with respect to the estimated class labels

Figure 4.12: Embeddings of the MIT CBCL face images with the proposed method.

Each color indicates a different class label in 1-10.

43



-0.2 -0.1 0 0.1 0.2

y(1) x-axis

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
y(

1
)  
y
-
a
x
i
s

1
2
3
4
5
6
7
8
9
10

(a) PCA embeddings of the modality 1 training

samples coloured with respect to the class labels
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(b) PCA embeddings of the modality 2 training

samples coloured with respect to the class labels
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(c) PCA embeddings of the modality 1 test sam-

ples coloured with respect to the true class labels
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(d) PCA embeddings of the modality 2 test sam-

ples coloured with respect to the true class labels
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(e) PCA embeddings of the modality 1 test sam-

ples coloured with respect to the estimated class

labels
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(f) PCA embeddings of the modality 2 test sam-

ples coloured with respect to the estimated class

labels

Figure 4.13: PCA embeddings of the MIT CBCL face images. Each color indicates a

different class label in 1-10.
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(a) PCA+CCA embeddings of the modality 1

training samples coloured with respect to the class

labels
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(b) PCA+CCA embeddings of the modality 2

training samples coloured with respect to the class

labels
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(c) PCA+CCA embeddings of the modality 1 test

samples coloured with respect to the true class la-

bels
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(d) PCA+CCA embeddings of the modality 2 test

samples coloured with respect to the true class la-

bels
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(e) PCA+CCA embeddings of the modality 1 test

samples coloured with respect to the estimated

class labels
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(f) PCA+CCA embeddings of the modality 2 test

samples coloured with respect to the estimated

class labels

Figure 4.14: PCA+CCA embeddings of the MIT CBCL face images. Each color

indicates a different class label in 1-10.
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One can clearly observe that the spontaneous grouping of the embeddings of the test

samples largely agrees with the class labels of the samples, and the estimated class

labels are very close to true class labels in Figure 4.12. This can be an important sign

for the success of the MNSE algorithm.

Figure 4.13 indicates that the efficiency of the dimensionality reduction with the PCA

algorithm is not as successful as the MNSE algorithm. Similar observations can be

made for the PCA+CCA algorithm by Figure 4.14. It can be concluded that the

nonlinear embedding with MNSE leads to better between-class separation than PCA

and the linear embedding with CCA.

4.2.3 Comparison of the proposed method with other algorithms

In this section, the proposed MNSE algorithm is compared to the multi-modal repre-

sentation learning algorithms CCA, GMLDA [44], JFSSL [3], as well as the baseline

single-modal methods PCA, NSSE [14], and NN classification in the original domain.

Moreover, the proposed MNSE algorithm is also compared to the specialized version

of the MNSE algorithm, which does not have the Lipschitz regularity term. The data

set is separated randomly into training and test sets at different ratios. The multi-

modal CCA and GMLDA algorithms are applied after a dimensionality reduction

step with PCA, which provides more accurate results. For the multi-modal methods,

projections from different modalities into a common space are learnt with the train-

ing data. In the test stage, a scenario is considered where a test image is available

in only one modality. Test images are projected with the learnt embeddings and are

classified with NN classification using the projections of the training samples of their

own modality. The single-modal methods are applied independently in each modality.

Table 4.1 shows the misclassification rates (in percentage) of test images for differ-

ent training sizes, using their representations in Modalities 1 and 2. The results are

averaged over 10 random repetitions of the experiment.

The results in Table 4.1 show that the proposed MNSE method outperforms all single-

modal methods and CCA in all setups. The comparison between MNSE and the

single-modal NSSE method is particularly interesting. Both methods compute non-

linear smooth projection functions and perform the final NN classification with the
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Table 4.1: Misclassification rates (%) of compared methods. Top and bottom rows

show the errors obtained with Modalities 1 and 2.

Algorithm
Training size

5.6% 8.3% 11.1% 13.9% 27.8%

NN
22.12 19 10.69 2.97 0.77

19.68 17.64 6.94 1.71 0

PCA
3.68 0.06 0.34 0.10 0

4.29 0.54 0.06 0 0

NSSE
1.94 0.03 0.03 0 0

4.56 1 0.09 0.03 0

CCA
3.67 0.06 0.34 0.10 0

4.29 0.55 0.06 0 0

GMLDA
0 0 0 0 0

0.30 0.06 0.03 0 0

JFSSL
0 0 0 0 0

0.12 0 0 0 0

MNSE
0.15 0 0 0 0

1.35 0.27 0.03 0 0

MNSE without Lipschitz
3.74 0.06 0.03 0 0

1.94 0.39 0.03 0 0

embeddings of training samples from only one modality. Hence, the fact that MNSE

outperforms NSSE confirms that it successfully exploits the information from both

modalities during the computation of the projection function, in contrast to the single-

modal NSSE. One can also observe that the linear JFSSL and GMLDA methods

yield similar classification performance to MNSE and can outperform MNSE in some

cases. Computing linear projections of the two modalities into a common space, JF-

SSL and GMLDA perform particularly well in this synthetic and regularly structured

face data set, as the images viewing the same participants from different angles are

quite convenient to align via linear transformations.

Another point to consider from Table 4.1 is that representation based approaches are

more successful than classification in the original domain. Furthermore, the unsuper-
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vised learning method CCA is not as accurate as supervised methods, as it does not

employ the information of the class labels when learning projections.

It can also be observed from Table 4.1 that the MNSE algorithm without the Lipschitz

regularity condition, i.e. fixed kernel scale parameters, has higher misclassification

error rate than the MNSE algorithm with the Lipschitz term. It shows the positive

effects of including the Lipschitz regularity condition in the learning objective, which

provides the generalization of interpolator to the whole sample space.

Computation time analysis is made for the compared methods as follows: 8 experi-

ments with 10 repetitions are conducted through the different number of training and

test samples. Training set sizes are chosen as 20, 30, 40, 50, 100, 150, 200 and 250. In

the data set, there exist 360 samples for each modality. In order to obtain average run

times for each algorithm, the duration between the loading of all data and the produc-

tion of the classification results is divided to the number of repetitions, which is 10.

A computer, which has 16 GB RAM, 512 GB SSD and Intel Xeon Processor model

E3-1240 v6 with 4 cores, 8M Cache, 3.70 GHz base frequency, is used to conduct the

experiments. Table 4.2 demonstrates the average run times of each experiment.

Table 4.2: Computation times of the compared methods

Algorithm Average run time (seconds)

Original domain 1.7746

PCA 4.3159

NSSE 8.0059

CCA 4.2083

GMLDA 3.5710

JSSL 7.4058

MNSE 21.3442

According to Table 4.2, the computation time of the MNSE algorithm is the highest

one. It probably results from the solution of the nonlinear optimization problem and

the incorporation of the inter-modal relations of the data. The computation time of

the NSSE algorithm is shorter than the MNSE algorithm, because of the fact that the
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MNSE algorithm uses the information of the additional modality. The PCA, CCA,

GMLDA and JFSSL algorithms have a smaller run time than the MNSE algorithm,

since it is easier to solve the optimization problems in these methods.

4.3 Image-Text Retrieval Experiments

The retrieval experiments are done on the Wikipedia image-text data set [70] and the

Pascal VOC 2007 image-text data set [73]. Firstly, proper projection functions are

learnt using the training set with the compared methods. Using these projections,

all samples are moved to the new space of embedding. Then, the retrieval task is

performed on the test set, by searching the relevant matches of an image query in the

text database (based on the nearest neighbours in the common space), and vice versa.

The precision and recall rates are computed by considering a retrieved item relevant

if it is from the same category as the query. (4.1) demonstrates how precision and

recall metrics are calculated in the experiments.

Precision =
# of relevant samples retrieved

# of all retrieved samples

Recall =
# of relevant samples retrieved

# of all relevant samples

(4.1)

After that the Average Precision (AP) score of each query sample is calculated by

averaging precision values over all relevant retrieved samples [3]. Finally, the Mean

Average Precision (MAP) scores of the methods, computed by averaging all average

precision values over all query samples [3]. Hence, if the MAP score of an algorithm

is higher than that of the others, it can be concluded that this algorithm works more

precisely in a retrieval experiment.

4.3.1 Retrieval Experiments on the Wikipedia Data Set

For the Wikipedia data set, obtained precision-recall and precision-scope curves are

illustrated in Figure 4.15 and calculated MAP scores are shown in Table 4.3:
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Figure 4.15: Retrieval results for the Wikipedia data set

Table 4.3: MAP scores for the Wikipedia data set

Algorithm CCA GMLDA JFSSL MNSE

Image Query 0.2280 0.2407 0.2440 0.2847

Text Query 0.1720 0.1815 0.2143 0.2321

4.3.2 Retrieval Experiments on the Pascal VOC 2007 Data Set

The precision-recall, precision-scope curves and the MAP scores for the Pascal VOC

2007 data set are presented in Figure 4.16 and Table 4.4:

4.3.3 Results of the Retrieval Experiments

The results in Figures 4.15, 4.16 and Tables 4.3, 4.4 show that the proposed MNSE
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Figure 4.16: Retrieval results for the Pascal VOC 2007 data set

Table 4.4: MAP scores for the Pascal VOC 2007 data set

Algorithm CCA GMLDA JFSSL MNSE

Image Query 0.2470 0.2609 0.2814 0.3390

Text Query 0.1674 0.1791 0.2418 0.3159

method outperforms all other multi-modal methods in all retrieval experiments. In

contrast to the face data set used in the previous experiment, the Wiki and the Pascal

VOC 2007 data sets have more diverse and irregular contents, and the two modali-

ties bear less resemblance. This makes the multi-modal representation learning task

more challenging, where the flexibility of the proposed nonlinear embedding ap-

proach brings clear advantages over the linear methods in comparison. These results

seem to support the theory that considering the Lipschitz-regularity of interpolators
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in the learning has a positive effect on the generalization performance.
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CHAPTER 5

CONCLUSION

Recent progress on the information technologies have provided people to collect sev-

eral types of data from different sources. Multi-modal data sets have been constructed

through the combination of various features, which allow a machine learning algo-

rithm to create powerful models to analyse and discriminate data. The latest studies

discover that single modal machine learning methods are likely to become less suc-

cessful than multi-modal learning techniques. The success of multi-modal machine

learning is highly related to the accordance between modalities and the complemen-

tary properties of the feature spaces in different modalities.

Co-training, multiple kernel learning, subspace learning and deep learning are four

essential branches of the multi-modal machine learning approaches. However, they

may encounter various problems such as lack of joint optimization, non-flexibility

on real world data and limitations of linear transformations on data sets with nonlin-

ear and intricate geometries. In order to deal with these issues, we have proposed

in this thesis a supervised nonlinear projection based multi-modal learning algorithm

building on the promising results of [13] and [14]. Our algorithm relies on the in-

terpolator regularity, class similarities and discriminations of intra and inter modality

relationships.

We tested our projection-based algorithm on several well-known multi-modal data

sets in classification and retrieval tasks. We compared the performances of some

important multi-modal learning approaches in the literature according to frequently

used metrics.

In the first experiment, we used 720 face images of 10 participants provided by MIT
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CBCL community. Firstly, we have studied how the algorithm parameters affect the

classification performance. We found that our algorithm reaches its best results after

a few iterations. Thus, we have observed that our algorithm can be terminated after a

small number of iterations in order to decrease the computational load. Furthermore,

we analysed the effects of the weight parameters used in our objective function. Our

findings demonstrated that the weight parameters for the intra and the inter modalities

between-class dissimilarities should be high. On the other hand, the weight param-

eter for the kernel function norm constraint needs to be low in order to balance the

effects of the optimization terms. Additionally, the weight parameters for the kernel

scale parameter constraint and the inter-modality class similarity need to be close to 1.

Secondly, we measured the performance of classification at different embedding di-

mensions and observed that the algorithm was more successful when the embedding

dimension was low. For this reason, we preferred to keep the embedding dimen-

sion small in order to reduce the computational complexity. Lastly, we compared the

misclassification errors for various numbers of training samples. Our algorithm was

observed to be among the methods providing the highest classification accuracy.

In the second experiment, we tested the methods on the Wikipedia data set, which

includes 2866 image-text pairs. We used the SIFT features of the images and the

Latent Dirichlet Allocation model parameters of the texts as two different modalities.

We used the MAP metric to evaluate the algorithm performances. We conducted

retrieval experiments on this data set by dividing it into 1300 training and 1566 test

samples. The experimental results suggested that our algorithm was more successful

than the CCA, GMLDA and JFSSL algorithms.

As a last experiment, we studied on a challenging PASCAL VOC data set that is

formed with different feature vectors such as the SIFT, GIST vectors of the images

and the word frequencies of the texts. We tested the retrieval performance of the

methods and acquired better MAP scores with the proposed method than the other

baseline methods. This is owed to the flexibility of the nonlinear projections learnt

with the proposed algorithm, which can be generalized to the whole data space. Lin-

ear projection techniques are more likely to fail on this challenging data set.

All experimental findings clearly indicate that our newly proposed solution can be a
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good alternative for classification or retrieval tasks on real world multi-modal data

sets, since it aims to increase within-class connection and between-class separation at

the same time while benefiting from the Lipschitz continuity of the interpolator gen-

eralizing the embedding to the whole data space. Although the optimization problem

consists of five major terms and a constraint, it can be easily solved with an iterative

algorithm. Moreover, the objective function converges within a few iterations and a

small embedding dimension is sufficient to achieve high performance. Thereby, the

computational load is relatively low and the probability of success is high for bigger

data sets.

One of our future directions is to test our algorithm on bigger data sets. Additionally,

the extension to incomplete data sets can be another challenge that we might address.

Nonexistent correspondences of samples in different modalities may affect the algo-

rithm performance. Another point to study is how our method extends to more than

two modalities. The optimization formula is appropriately established to be fitted

with three or more modalities cases. These cases may be good test scenarios for the

capabilities of our algorithm. All these issues can be considered in the possible future

research efforts related to this thesis study.
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